Exact energy bands and Fermi surfaces of separable Abelian potentials

被引:6
作者
Belokolos, ED
Eilbeck, JC
Enolskii, VZ
Salerno, M
机构
[1] NASU, Inst Magnet, Dept Theoret Phys, UA-03142 Kiev, Ukraine
[2] Heriot Watt Univ, Dept Math, Edinburgh EH14 4AS, Midlothian, Scotland
[3] Univ Salerno, Dipartimento Sci Fis ER Caianiello, I-84081 Baronissi, SA, Italy
[4] INFM, Unita Salerno, I-84081 Baronissi, SA, Italy
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2001年 / 34卷 / 05期
关键词
D O I
10.1088/0305-4470/34/5/302
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a general theory for multidimensional Schrodinger equations with separable Abelian potentials with an arbitrary number of gaps in the spectrum. In particular, we derive general equations which allow one to express the energy and the wavevectors in the Brillouin zone as a function of the spectral parameters. By using the solutions of these equations, we show how to construct the energy bands and the Fermi surfaces in the first Brillouin zone of the reciprocal lattice. As illustrative examples we consider the case of two-dimensional separable potentials with one, two and three gaps in the spectrum. The method can be applied to crystals with a cubic or a rectangular parallelogram Wigner-Seitz cell in arbitrary dimensions. The possibility to generalize the theory to other crystal symmetries is also briefly discussed.
引用
收藏
页码:943 / 959
页数:17
相关论文
共 26 条
[21]  
KRICHEVER IM, 1980, FUNCT ANAL APPL+, V14, P282
[22]   On a class of elliptic potentials of the Dirac operator [J].
Smirnov, AO .
SBORNIK MATHEMATICS, 1997, 188 (1-2) :115-135
[23]   FINITE-GAP ELLIPTIC SOLUTIONS OF THE KDV EQUATION [J].
SMIRNOV, AO .
ACTA APPLICANDAE MATHEMATICAE, 1994, 36 (1-2) :125-166
[24]  
Whittaker E. T., 1969, A course of modern analysis
[25]  
Zabrodin A, 1999, INT MATH RES NOTICES, V1999, P589
[26]  
[No title captured]