Optimal diffusive transport in a tilted periodic potential

被引:172
作者
Lindner, B [1 ]
Kostur, M [1 ]
Schimansky-Geier, L [1 ]
机构
[1] Humboldt Univ, Inst Phys, D-10115 Berlin, Germany
来源
FLUCTUATION AND NOISE LETTERS | 2001年 / 1卷 / 01期
关键词
brownian motion; diffusion; periodic potentials; transport;
D O I
10.1142/S0219477501000056
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the diffusive motion of an overdamped Brownian particle in a tilted periodic potential. Mapping the continuous dynamics onto. a discrete cumulative process we find exact expressions for the diffusion coefficient and the Peclet number which characterize the transport. At a sufficiently strong but subcritical bias an optimized transport with respect to the noise strength is observed. These results are confirmed by numerical solution of the Fokker-Planck equation.
引用
收藏
页码:R25 / R39
页数:15
相关论文
共 16 条
[1]   Threshold diffusion in a tilted washboard potential [J].
Costantini, G ;
Marchesoni, F .
EUROPHYSICS LETTERS, 1999, 48 (05) :491-497
[2]  
Cox D. R, 1962, RENEWAL THEORY
[3]   DIFFUSION-COEFFICIENT FOR A BROWNIAN PARTICLE IN A PERIODIC FIELD OF FORCE .1. LARGE FRICTION LIMIT [J].
FESTA, R ;
DAGLIANO, EG .
PHYSICA A, 1978, 90 (02) :229-244
[4]   Diffusion in discrete ratchets [J].
Freund, JA ;
Schimansky-Geier, L .
PHYSICAL REVIEW E, 1999, 60 (02) :1304-1309
[5]   PROBLEM OF BROWNIAN-MOTION IN A PERIODIC POTENTIAL [J].
FULDE, P ;
PIETRONERO, L ;
SCHNEIDER, WR ;
STRASSLER, S .
PHYSICAL REVIEW LETTERS, 1975, 35 (26) :1776-1779
[6]  
Gardiner C. W., 1985, HDB STOCHASTIC METHO, V3
[7]   DYNAMICS OF NON-LINEAR SYSTEMS - THE HEAVY DAMPING LIMIT [J].
GUYER, RA .
PHYSICAL REVIEW B, 1980, 21 (10) :4484-4499
[8]   NOISE-INDUCED SYNCHRONOUS NEURONAL OSCILLATIONS [J].
KURRER, C ;
SCHULTEN, K .
PHYSICAL REVIEW E, 1995, 51 (06) :6213-6218
[9]  
LANDAU LD, 1971, LEHRBUCH THEORETISCH, V6
[10]   Analytical approach to the stochastic FitzHugh-Nagumo system and coherence resonance [J].
Lindner, B ;
Schimansky-Geier, L .
PHYSICAL REVIEW E, 1999, 60 (06) :7270-7276