Approximate Ginsparg-Wilson fermions: a first test

被引:93
作者
Gattringer, C
Hip, I
Lang, CB
机构
[1] Graz Univ, Inst Theoret Phys, A-8010 Graz, Austria
[2] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA
[3] Forschungszentrum Julich, NIC, John von Neumann Inst Comp, D-52425 Julich, Germany
关键词
lattice field theory; chiral fermions;
D O I
10.1016/S0550-3213(00)00717-3
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We construct a 4-d lattice Dirac operator D using a systematical expansion in terms of simple operators on the lattice. The Ginsparg-Wilson equation turns into a system of coupled equations for the expansion coefficients of D. We solve these equations for a finite parametrization of D and find an approximate solution of the Ginsparg-Wilson equation. We analyze the spectral properties of our D for various ensembles of quenched SU(3) configurations. Improving the gauge field action considerably improves the spectral properties of our D. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:451 / 474
页数:24
相关论文
共 51 条
[31]   Non-perturbative renormalization of lattice QCD at all scales [J].
Jansen, K ;
Liu, C ;
Luscher, M ;
Simma, H ;
Sint, S ;
Sommer, R ;
Weisz, P ;
Wolff, U .
PHYSICS LETTERS B, 1996, 372 (3-4) :275-282
[32]  
JUNG C, HEPLAT0007033
[33]  
KHAN AA, HEPLAT0007014
[34]   Fixed point action for the massless lattice Schwinger model [J].
Lang, CB ;
Pany, TK .
NUCLEAR PHYSICS B, 1998, 513 (03) :645-657
[35]   VIABILITY OF LATTICE PERTURBATION-THEORY [J].
LEPAGE, GP ;
MACKENZIE, PB .
PHYSICAL REVIEW D, 1993, 48 (05) :2250-2264
[36]  
LIU KF, 2000, SEM GIV JEFF LAB JUN
[37]  
Lüscher M, 2000, NUCL PHYS B-PROC SUP, V83-4, P34
[38]   Chiral symmetry and O(alpha) improvement in lattice QCD [J].
Luscher, M ;
Sint, S ;
Sommer, R ;
Weisz, P .
NUCLEAR PHYSICS B, 1996, 478 (1-2) :365-397
[39]   ON-SHELL IMPROVED LATTICE GAUGE-THEORIES [J].
LUSCHER, M ;
WEISZ, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1985, 97 (1-2) :59-77
[40]   ON-SHELL IMPROVED LATTICE GAUGE-THEORIES [J].
LUSCHER, M ;
WEISZ, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1985, 97 (1-2) :59-77