The complexity of lattice knots

被引:23
作者
Diao, Y
Ernst, C
机构
[1] Univ N Carolina, Dept Math, Charlotte, NC 28223 USA
[2] Western Kentucky Univ, Dept Math, Bowling Green, KY 42101 USA
关键词
knots; knotted polygons; cubic lattice; knot complexity;
D O I
10.1016/S0166-8641(97)00178-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A family of polygonal knots K-n on the cubical lattice is constructed with the property that the quotient of length L(K-n) over the crossing number Cr(K-n) approaches zero as L approaches infinity. More precisely Cr(K-n) = O(L(K-n)(4/3)). It is shown that this construction is optimal in the sense that for any knot K on the cubical lattice with length L and Cr crossings Cr less than or equal to 3.2 L-4/3. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 8 条
[1]  
BUCK G, APPL PROJECTION ENER
[2]  
CANTARELLA J, UPPER BOUNDS WRITHIN
[3]  
Diao Y., 1993, J KNOT THEOR RAMIF, V02, P413, DOI DOI 10.1142/S0218216593000234
[4]  
DIAO Y, IN PRESS TOPOLOGY GE
[5]   ON THE BRAID INDEX OF ALTERNATING LINKS [J].
MURASUGI, K .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 326 (01) :237-260
[6]   KNOTS IN RANDOM-WALKS [J].
PIPPENGER, N .
DISCRETE APPLIED MATHEMATICS, 1989, 25 (03) :273-278
[7]  
SUMMERS DW, 1988, J PHYS A, V21, P1689
[8]   MINIMAL KNOTS IN THE CUBIC LATTICE [J].
VANRENSBURG, EJJ ;
PROMISLOW, SD .
JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 1995, 4 (01) :115-130