MINIMAL KNOTS IN THE CUBIC LATTICE

被引:32
作者
VANRENSBURG, EJJ
PROMISLOW, SD
机构
关键词
KNOTTED POLYGONS; CUBIC LATTICE; KNOT COMPLEXITY; SIMULATED ANNEALING;
D O I
10.1142/S0218216595000065
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
How many edges are necessary and sufficient to construct a knot of type K in the cubic lattice? Define the minimal edge number of a knot to be this number of edges. To what extend does the minimal edge number measure the complexity of a knot? What is the behaviour of the minimal edge number under the connected sum of knots, and what is its limiting behaviour? We consider these questions and show that the minimal edge number may be computed using simulated annealing.
引用
收藏
页码:115 / 130
页数:16
相关论文
共 23 条
[1]  
[Anonymous], 1926, ANN MATH, DOI 10.2307/1968399
[2]   RANDOM-PATHS AND RANDOM SURFACES ON A DIGITAL-COMPUTER [J].
BERG, B ;
FOERSTER, D .
PHYSICS LETTERS B, 1981, 106 (04) :323-326
[3]   KNOTS AS DYNAMICAL-SYSTEMS [J].
BUCK, G ;
SIMON, J .
TOPOLOGY AND ITS APPLICATIONS, 1993, 51 (03) :229-246
[4]   POLYMERS AND G-ABSOLUTE-VALUE-PHI-4 THEORY IN FOUR DIMENSIONS [J].
DECARVALHO, CA ;
CARACCIOLO, S ;
FROHLICH, J .
NUCLEAR PHYSICS B, 1983, 215 (02) :209-248
[5]  
Diao Y., 1993, J KNOT THEOR RAMIF, V02, P413, DOI [10.1142/s0218216593000234, DOI 10.1142/S0218216593000234]
[6]   THE NUMBER OF SMALLEST KNOTS ON THE CUBIC LATTICE [J].
DIAO, YN .
JOURNAL OF STATISTICAL PHYSICS, 1994, 74 (5-6) :1247-1254
[7]  
Hille E., 1948, AM MATH SOC C PUBL, V31
[8]   OPTIMIZATION BY SIMULATED ANNEALING [J].
KIRKPATRICK, S ;
GELATT, CD ;
VECCHI, MP .
SCIENCE, 1983, 220 (4598) :671-680
[9]   EQUATION OF STATE CALCULATIONS BY FAST COMPUTING MACHINES [J].
METROPOLIS, N ;
ROSENBLUTH, AW ;
ROSENBLUTH, MN ;
TELLER, AH ;
TELLER, E .
JOURNAL OF CHEMICAL PHYSICS, 1953, 21 (06) :1087-1092
[10]  
MILLETT KC, 1993, 1993 INT JOINT M AMS