Force-free equilibria and reconnection of the magnetic field lines in collisionless plasma configurations

被引:42
作者
Bobrova, NA [1 ]
Bulanov, SV
Sakai, JI
Sugiyama, D
机构
[1] State Atom Energy Commiss, Inst Theoret & Expt Phys, Moscow, Russia
[2] Russian Acad Sci, Inst Gen Phys, Moscow, Russia
[3] Toyama Univ, Fac Engn, Lab Plasma Astrophys, Toyama 930, Japan
关键词
D O I
10.1063/1.1344196
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The plasma equilibrium in the force-free magnetic field in the framework of collisionless approximation is investigated. The equilibrium solution of the Vlasov-Maxwell equations, describing the distribution function of charged particles in the one-dimensional force-free magnetic field is obtained. It is shown that such a magnetic field can exist in plasma with anisotropic temperatures. Then, the tearing-mode instability of this configuration is investigated, and the results of 2D3V PIC (two coordinates and three velocity components particle-in-cell) simulations of the magnetic field lines reconnection during nonlinear development of the tearing-mode instability of the collisionless force-free equilibrium are presented. (C) 2001 American Institute of Physics.
引用
收藏
页码:759 / 768
页数:10
相关论文
共 33 条
[21]  
Kadomtsev BB, 2001, REV PL PHYS, V22, P1
[22]  
LAVAL G, 1966, PLASMA PHYS CONTROLL, V2, P259
[23]  
LICHTENBERG AJ, 1983, REGULAR STOCHASTIC M
[24]   Sheared-flow generalization of the Harris sheet [J].
Mahajan, SM ;
Hazeltine, RD .
PHYSICS OF PLASMAS, 2000, 7 (04) :1287-1293
[25]  
MILNETHOMSON L, 1968, HDB MATH FUNCTIONS, P380
[26]  
Moffat H.K., 1978, MAGNETIC FIELD GENER
[27]   COLLISIONLESS DAMPING OF NONLINEAR PLASMA OSCILLATIONS [J].
ONEIL, T .
PHYSICS OF FLUIDS, 1965, 8 (12) :2255-&
[28]  
Priest E., 1984, SOLAR MAGNETOHYDRODY
[29]   THEORY OF SUBSTORM MECHANISM [J].
SCHINDLER, K .
JOURNAL OF GEOPHYSICAL RESEARCH, 1974, 79 (19) :2803-2810
[30]  
Shafranov V.D., 1966, REV PLASMA PHYS, V2, P103