Universal intermittent properties of particle trajectories in highly turbulent flows

被引:144
作者
Arneodo, A. [1 ]
Benzi, R. [2 ,3 ]
Berg, J. [4 ]
Biferale, L. [2 ,3 ]
Bodenschatz, E. [5 ]
Busse, A. [6 ]
Calzavarini, E. [7 ]
Castaing, B. [1 ]
Cencini, M. [8 ]
Chevillard, L. [1 ]
Fisher, R. T. [9 ]
Grauer, R. [10 ]
Homann, H. [10 ]
Lamb, D. [9 ]
Lanotte, A. S. [11 ,12 ]
Leveque, E. [1 ]
Luethi, B. [13 ]
Mann, J. [4 ]
Mordant, N. [14 ]
Mueller, W. -C. [6 ]
Ott, S. [4 ]
Ouellette, N. T. [15 ]
Pinton, J. -F.
Pope, S. B. [16 ]
Roux, S. G. [1 ]
Toschi, F. [17 ,18 ]
Xu, H. [5 ]
Yeung, P. K. [19 ]
机构
[1] Ecole Normale Super Lyon, Phys Lab, F-69007 Lyon, France
[2] Univ Roma Tor Vergata, I-00133 Rome, Italy
[3] Ist Nazl Fis Nucl, I-00133 Rome, Italy
[4] DTU, Wind Energy Dept Riso Natl Lab, DK-4000 Roskilde, Denmark
[5] Max Planck Inst Dynam & Self Org, I-00133 Rome, Italy
[6] Max Planck Inst Plasma Phys, D-85748 Garching, Germany
[7] Univ Twente, Dept Appl Phys, NL-7500 AE Enschede, Netherlands
[8] Univ Roma La Sapienza, SMC Dipartimento Fis, INFM, CNR, I-00185 Rome, Italy
[9] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA
[10] Ruhr Univ Bochum, Inst Theoret Phys 1, D-44780 Bochum, Germany
[11] INFN, I-73100 Lecce, Italy
[12] CNR ISAC, I-00133 Rome, Italy
[13] ETH, IFU, Zurich, Switzerland
[14] Ecole Normale Super, CNRS, Phys Stat Lab, F-75231 Paris 05, France
[15] Haverford Coll, Haverford, PA 19041 USA
[16] Cornell Univ, Sibley Sch Mech & Aerosp Engn, Ithaca, NY 14853 USA
[17] CNR, Ist Applicaz Calcolo, I-00161 Rome, Italy
[18] Ist Nazl Fis Nucl, Sezione Ferrara, I-44100 Ferrara, Italy
[19] Georgia Inst Technol, Sch Aerosp Engn, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevLett.100.254504
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a collection of eight data sets from state-of-the-art experiments and numerical simulations on turbulent velocity statistics along particle trajectories obtained in different flows with Reynolds numbers in the range R-lambda is an element of [120740]. Lagrangian structure functions from all data sets are found to collapse onto each other on a wide range of time lags, pointing towards the existence of a universal behavior, within present statistical convergence, and calling for a unified theoretical description. Parisi-Frisch multifractal theory, suitably extended to the dissipative scales and to the Lagrangian domain, is found to capture the intermittency of velocity statistics over the whole three decades of temporal scales investigated here.
引用
收藏
页数:5
相关论文
共 34 条
[31]   REYNOLDS-NUMBER EFFECTS IN LAGRANGIAN STOCHASTIC-MODELS OF TURBULENT DISPERSION [J].
SAWFORD, BL .
PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1991, 3 (06) :1577-1586
[32]   Particle-turbulence interactions in atmospheric clouds [J].
Shaw, RA .
ANNUAL REVIEW OF FLUID MECHANICS, 2003, 35 :183-227
[33]   High order Lagrangian velocity statistics in turbulence [J].
Xu, H ;
Bourgoin, M ;
Ouellette, NT ;
Bodenschatz, E .
PHYSICAL REVIEW LETTERS, 2006, 96 (02)
[34]   Reynolds number dependence of Lagrangian statistics in large numerical simulations of isotropic turbulence [J].
Yeung, P. K. ;
Pope, S. B. ;
Sawford, B. L. .
JOURNAL OF TURBULENCE, 2006, 7 (58) :1-12