Ultralow Thermal Conductivity of Isotope-Doped Silicon Nanowires

被引:222
作者
Yang, Nuo [1 ,2 ]
Zhang, Gang [3 ]
Li, Baowen [1 ,2 ,4 ]
机构
[1] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore
[2] Natl Univ Singapore, Ctr Computat Sci & Engn, Singapore 117542, Singapore
[3] Inst Microelect, Singapore 117685, Singapore
[4] Natl Univ Singapore, Grad Sch Integrat Sci & Engn, Singapore 117597, Singapore
关键词
D O I
10.1021/nl0725998
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The thermal conductivity of silicon nanowires (SiNWs) is investigated by molecular dynamics (MD) simulation. It is found that the thermal conductivity of SiNWs can be reduced exponentially by isotopic defects at room temperature. The thermal conductivity reaches the minimum, which is about 27% of that of pure Si-28 NW, when doped with 50% isotope atoms. The thermal conductivity of isotopic-superlattice structured SiNWs depends clearly on the period of superlattice. At a critical period of 1.09 nm, the thermal conductivity is only 25% of the value of pure Si NW. An anomalous enhancement of thermal conductivity is observed when the superlattice period is smaller than this critical length. The ultralow thermal conductivity of superlattice structured SiNWs is explained with phonon spectrum theory.
引用
收藏
页码:276 / 280
页数:5
相关论文
共 54 条
[1]  
[Anonymous], 1986, TRANSPORT PHONON SYS
[2]  
Bonetto F., 2000, MATH PHYS 2000, P128, DOI [DOI 10.1142/9781848160224_0008, 10.1142/9781848160224_0008.]
[3]   Measurement of the thermal conductance of silicon nanowires at low temperature [J].
Bourgeois, Olivier ;
Fournier, Thierry ;
Chaussy, Jacques .
JOURNAL OF APPLIED PHYSICS, 2007, 101 (01)
[4]   Lattice thermal conductivity of silicon from empirical interatomic potentials [J].
Broido, DA ;
Ward, A ;
Mingo, N .
PHYSICAL REVIEW B, 2005, 72 (01)
[5]   Thermal conductivity of isotopically pure and Ge-doped Si epitaxial layers from 300 to 550 K [J].
Cahill, DG ;
Watanabe, F .
PHYSICAL REVIEW B, 2004, 70 (23) :1-3
[6]   Analysis of the effect of isotope scattering on the thermal conductivity of crystalline silicon [J].
Capinski, WS ;
Maris, HJ ;
Tamura, S .
PHYSICAL REVIEW B, 1999, 59 (15) :10105-10110
[7]   Thermal conductivity of isotopically enriched Si [J].
Capinski, WS ;
Maris, HJ ;
Bauser, E ;
Silier, I ;
AsenPalmer, M ;
Ruf, T ;
Cardona, M ;
Gmelin, E .
APPLIED PHYSICS LETTERS, 1997, 71 (15) :2109-2111
[8]   Isotope effect on the thermal conductivity of boron nitride nanotubes [J].
Chang, C. W. ;
Fennimore, A. M. ;
Afanasiev, A. ;
Okawa, D. ;
Ikuno, T. ;
Garcia, H. ;
Li, Deyu ;
Majumdar, A. ;
Zettl, A. .
PHYSICAL REVIEW LETTERS, 2006, 97 (08)
[9]   Thermal conductivity of diamond and related materials from molecular dynamics simulations [J].
Che, JW ;
Çagin, T ;
Deng, WQ ;
Goddard, WA .
JOURNAL OF CHEMICAL PHYSICS, 2000, 113 (16) :6888-6900
[10]   Thermal conductivity of carbon nanotubes [J].
Che, JW ;
Çagin, T ;
Goddard, WA .
NANOTECHNOLOGY, 2000, 11 (02) :65-69