Can warming particles enter global climate discussions?

被引:75
作者
Bond, Tami C. [1 ]
机构
[1] Univ Illinois, Dept Civil & Environm Engn, Urbana, IL 61801 USA
来源
ENVIRONMENTAL RESEARCH LETTERS | 2007年 / 2卷 / 04期
关键词
particles and aerosols; impacts of climate change; effects of aerosols; climate policy;
D O I
10.1088/1748-9326/2/4/045030
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
'Soot' or 'black carbon', which comes from incomplete combustion, absorbs light and warms the atmosphere. Although there have been repeated suggestions that reduction of black carbon could be a viable part of decreasing global warming, it has not yet been considered when choosing actions to reduce climatic impact. In this paper, I examine four conceptual barriers to the consideration of aerosols in global agreements. I conclude that some of the major objections to considering aerosols under hemispheric or global agreements are illusory because: (1) a few major sources will be addressed by local regulations, but the remainder may not be addressed by traditional air quality management; (2) climate forcing by carbon particles is not limited to 'hot spots'-about 90% of it occurs at relatively low concentrations; (3) while aerosol science is complex, the most salient characteristics of aerosol behavior can be condensed into tractable metrics including, but not limited to, the global warming potential; (4) despite scientific uncertainties, reducing all aerosols from major sources of black carbon will reduce direct climate warming with a very high probability. This change in climate forcing accounts for at least 25% of the accompanying CO2 forcing with significant probability (25% for modern diesel engines, 90% for superemitting diesels, and 55% for cooking with biofuels). Thus, this fraction of radiative forcing should not be ignored.
引用
收藏
页数:9
相关论文
共 41 条
[1]   Objective estimation of the probability density function for climate sensitivity [J].
Andronova, NG ;
Schlesinger, ME .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2001, 106 (D19) :22605-22611
[2]  
[Anonymous], CLIMATE CHANGE 2001
[3]   Aerosol direct radiative effects over the northwest Atlantic, northwest Pacific, and North Indian Oceans: estimates based on in-situ chemical and optical measurements and chemical transport modeling [J].
Bates, T. S. ;
Anderson, T. L. ;
Baynard, T. ;
Bond, T. ;
Boucher, O. ;
Carmichael, G. ;
Clarke, A. ;
Erlick, C. ;
Guo, H. ;
Horowitz, L. ;
Howell, S. ;
Kulkarni, S. ;
Maring, H. ;
McComiskey, A. ;
Middlebrook, A. ;
Noone, K. ;
O'Dowd, C. D. ;
Ogren, J. ;
Penner, J. ;
Quinn, P. K. ;
Ravishankara, A. R. ;
Savoie, D. L. ;
Schwartz, S. E. ;
Shinozuka, Y. ;
Tang, Y. ;
Weber, R. J. ;
Wu, Y. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2006, 6 :1657-1732
[4]   Regional atmospheric pollution and transboundary air quality management [J].
Bergin, MS ;
West, JJ ;
Keating, TJ ;
Russell, AG .
ANNUAL REVIEW OF ENVIRONMENT AND RESOURCES, 2005, 30 :1-37
[5]   Abatement of greenhouse gases: Does location matter? [J].
Berntsen, Terje ;
Fuglestvedt, Jan ;
Myhre, Gunnar ;
Stordal, Frode ;
Berglen, Tore F. .
CLIMATIC CHANGE, 2006, 74 (04) :377-411
[6]   Limitations in the enhancement of visible light absorption due to mixing state [J].
Bond, Tami C. ;
Habib, Gazala ;
Bergstrom, Robert W. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2006, 111 (D20)
[7]   Light absorption by carbonaceous particles: An investigative review [J].
Bond, TC ;
Bergstrom, RW .
AEROSOL SCIENCE AND TECHNOLOGY, 2006, 40 (01) :27-67
[8]   Can reducing black carbon emissions counteract global warming? [J].
Bond, TC ;
Sun, HL .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2005, 39 (16) :5921-5926
[9]   A technology-based global inventory of black and organic carbon emissions from combustion [J].
Bond, TC ;
Streets, DG ;
Yarber, KF ;
Nelson, SM ;
Woo, JH ;
Klimont, Z .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2004, 109 (D14) :D14203
[10]   EFFECT OF ABSORBING AEROSOLS ON GLOBAL RADIATION BUDGET [J].
CHYLEK, P ;
WONG, J .
GEOPHYSICAL RESEARCH LETTERS, 1995, 22 (08) :929-931