An Accurate and Generalized Approach to Plaque Characterization in 346 Carotid Ultrasound Scans

被引:72
作者
Acharya, U. Rajendra [1 ]
Faust, Oliver [1 ]
Sree, S. Vinitha [2 ]
Molinari, Filippo [3 ]
Saba, Luca [4 ]
Nicolaides, Andrew [5 ,6 ]
Suri, Jasjit S. [2 ,7 ]
机构
[1] Ngee Ann Polytech, Dept Elect & Comp Engn, Singapore 599489, Singapore
[2] Global Biomed Technol Inc, Roseville, CA 95661 USA
[3] Politecn Torino, Dept Elect, Biolab, I-10129 Turin, Italy
[4] Univ Cagliari, Azienda Osped, Dept Radiol, I-09124 Cagliari, Italy
[5] Vasc Screening & Diagnost Ctr, London W1G 7BS, England
[6] Univ Cyprus, Dept Biol Sci, CY-1678 Nicosia, Cyprus
[7] Idaho State Univ Aff, Dept Biomed Engn, Pocatello, ID 83209 USA
关键词
Atherosclerosis; carotid ultrasound; classification; discrete wavelet transform (DWT); grayscale features; support vector machine (SVM); ATHEROSCLEROSIS; CLASSIFICATION; SEVERITY; FEATURES; AIMILANO;
D O I
10.1109/TIM.2011.2174897
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Computer-aided diagnosis (CAD) of carotid atherosclerosis into symptomatic or asymptomatic is useful in the analysis of cardiac health. This paper describes a patented CAD system called Atheromatic (TM) for symptomatic versus asymptomatic plaque classification in carotid ultrasound images. The system involves two steps: 1) feature extraction using a combination of discrete wavelet transform and averaging algorithms and 2) classification using a support vector machine (SVM) classifier for automated decision making. The CAD system was evaluated using a database consisting of 150 asymptomatic and 196 symptomatic plaque regions which were labeled using the ground truth based on the presence or absence of symptoms. Threefold cross-validation protocol was adapted for developing and testing the classifiers. We observed that the SVM classifier with a polynomial kernel of order 2 was to achieve a classification accuracy of 83.7%.
引用
收藏
页码:1045 / 1053
页数:9
相关论文
共 37 条
[1]   Carotid plaque ultrasonic heterogeneity and severity of stenosis [J].
AbuRahma, AF ;
Wulu, JT ;
Crotty, B .
STROKE, 2002, 33 (07) :1772-1775
[2]   Symptomatic vs. Asymptomatic Plaque Classification in Carotid Ultrasound [J].
Acharya, Rajendra U. ;
Faust, Oliver ;
Alvin, A. P. C. ;
Sree, S. Vinitha ;
Molinari, Filippo ;
Saba, Luca ;
Nicolaides, Andrew ;
Suri, Jasjit S. .
JOURNAL OF MEDICAL SYSTEMS, 2012, 36 (03) :1861-1871
[3]  
[Anonymous], 1987, Statist Sci, DOI 10.1214/ss/1177013437
[4]   Stenting versus Endarterectomy for Treatment of Carotid-Artery Stenosis [J].
Brott, Thomas G. ;
Hobson, Robert W., II ;
Howard, George ;
Roubin, Gary S. ;
Clark, Wayne M. ;
Brooks, William ;
Mackey, Ariane ;
Hill, Michael D. ;
Leimgruber, Pierre P. ;
Sheffet, Alice J. ;
Howard, Virginia J. ;
Moore, Wesley S. ;
Voeks, Jenifer H. ;
Hopkins, L. Nelson ;
Cutlip, Donald E. ;
Cohen, David J. ;
Popma, Jeffrey J. ;
Ferguson, Robert D. ;
Cohen, Stanley N. ;
Blackshear, Joseph L. ;
Silver, Frank L. ;
Mohr, J. P. ;
Lal, Brajesh K. ;
Meschia, James F. .
NEW ENGLAND JOURNAL OF MEDICINE, 2010, 363 (01) :11-23
[5]   A tutorial on Support Vector Machines for pattern recognition [J].
Burges, CJC .
DATA MINING AND KNOWLEDGE DISCOVERY, 1998, 2 (02) :121-167
[6]   Atherosclerotic plaque rupture in symptomatic carotid artery stenosis [J].
Carr, S ;
Farb, A ;
Pearce, WH ;
Virmani, R ;
Yao, JST .
JOURNAL OF VASCULAR SURGERY, 1996, 23 (05) :755-765
[7]  
Carter-Monroe N, 2011, ATHEROSCLEROSIS DISEASE MANAGEMENT, P3, DOI 10.1007/978-1-4419-7222-4_1
[8]   Recombinant apolipoprotein A-IMilano:: a novel agent for the induction of regression of atherosclerotic plaques [J].
Chiesa, G ;
Sirtori, CR .
ANNALS OF MEDICINE, 2003, 35 (04) :267-273
[9]   Texture-based classification of atherosclerotic carotid plaques [J].
Christodoulou, CI ;
Pattichis, CS ;
Pantziaris, M ;
Nicolaides, A .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2003, 22 (07) :902-912
[10]   SUPPORT-VECTOR NETWORKS [J].
CORTES, C ;
VAPNIK, V .
MACHINE LEARNING, 1995, 20 (03) :273-297