An Accurate and Generalized Approach to Plaque Characterization in 346 Carotid Ultrasound Scans

被引:72
作者
Acharya, U. Rajendra [1 ]
Faust, Oliver [1 ]
Sree, S. Vinitha [2 ]
Molinari, Filippo [3 ]
Saba, Luca [4 ]
Nicolaides, Andrew [5 ,6 ]
Suri, Jasjit S. [2 ,7 ]
机构
[1] Ngee Ann Polytech, Dept Elect & Comp Engn, Singapore 599489, Singapore
[2] Global Biomed Technol Inc, Roseville, CA 95661 USA
[3] Politecn Torino, Dept Elect, Biolab, I-10129 Turin, Italy
[4] Univ Cagliari, Azienda Osped, Dept Radiol, I-09124 Cagliari, Italy
[5] Vasc Screening & Diagnost Ctr, London W1G 7BS, England
[6] Univ Cyprus, Dept Biol Sci, CY-1678 Nicosia, Cyprus
[7] Idaho State Univ Aff, Dept Biomed Engn, Pocatello, ID 83209 USA
关键词
Atherosclerosis; carotid ultrasound; classification; discrete wavelet transform (DWT); grayscale features; support vector machine (SVM); ATHEROSCLEROSIS; CLASSIFICATION; SEVERITY; FEATURES; AIMILANO;
D O I
10.1109/TIM.2011.2174897
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Computer-aided diagnosis (CAD) of carotid atherosclerosis into symptomatic or asymptomatic is useful in the analysis of cardiac health. This paper describes a patented CAD system called Atheromatic (TM) for symptomatic versus asymptomatic plaque classification in carotid ultrasound images. The system involves two steps: 1) feature extraction using a combination of discrete wavelet transform and averaging algorithms and 2) classification using a support vector machine (SVM) classifier for automated decision making. The CAD system was evaluated using a database consisting of 150 asymptomatic and 196 symptomatic plaque regions which were labeled using the ground truth based on the presence or absence of symptoms. Threefold cross-validation protocol was adapted for developing and testing the classifiers. We observed that the SVM classifier with a polynomial kernel of order 2 was to achieve a classification accuracy of 83.7%.
引用
收藏
页码:1045 / 1053
页数:9
相关论文
共 37 条
[31]   SEVERITY OF ATHEROSCLEROSIS IN CEREBRAL ARTERIES CORONARY ARTERIES AND AORTAS [J].
SOLBERG, LA ;
MCGARRY, PA ;
MOOSSY, J ;
STRONG, JP ;
TEJADA, C ;
LOKEN, AC .
ANNALS OF THE NEW YORK ACADEMY OF SCIENCES-SERIES, 1968, 149 (A2) :956-+
[32]  
Stoitsis J, 2004, P ANN INT IEEE EMBS, V26, P1407
[33]  
Stoitsis J, 2006, Conf Proc IEEE Eng Med Biol Soc, V2006, P2392
[34]   Texture Characterization of Carotid Atherosclerotic Plaque from B-mode Ultrasound Using Gabor Filters [J].
Stoitsis, John ;
Golemati, Spyretta ;
Tsiaparas, Nikolaos ;
Nikita, Konstantina S. .
2009 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-20, 2009, :455-+
[35]  
TAYLOR DW, 1991, NEW ENGL J MED, V325, P445
[36]  
Tsianos N., 2009, INTELLIGENT USER INT, P1, DOI DOI 10.4018/978-1-60566-032-5.CH001
[37]  
Vapnik V., 1998, Statistical Learning Theory, P5