General-covariant evolution formalism for numerical relativity -: art. no. 104005

被引:124
作者
Bona, C
Ledvinka, T
Palenzuela, C
Zácek, M
机构
[1] Univ Illes Balears, Dept Fis, Palma de Mallorca, Balears, Spain
[2] Charles Univ Prague, Fac Math & Phys, Inst Theoret Phys, CR-18000 Prague 8, Czech Republic
关键词
D O I
10.1103/PhysRevD.67.104005
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A general-covariant extension of Einstein's field equations is considered with a view to numerical relativity applications. The basic variables are taken to be the metric tensor and an additional four-vector Z(mu). Einstein's solutions are recovered when the additional four-vector vanishes, so that the energy and momentum constraints amount to the covariant algebraic condition Z(mu)=0. The extended field equations can be supplemented by suitable coordinate conditions in order to provide symmetric hyperbolic evolution systems: this is actually the case for either harmonic coordinates or normal coordinates with harmonic slicing.
引用
收藏
页数:5
相关论文
共 36 条
[1]   EINSTEIN AND YANG-MILLS THEORIES IN HYPERBOLIC FORM WITHOUT GAUGE-FIXING [J].
ABRAHAMS, A ;
ANDERSON, A ;
CHOQUETBRUHAT, Y ;
YORK, JW .
PHYSICAL REVIEW LETTERS, 1995, 75 (19) :3377-3381
[2]   Gauge conditions for long-term numerical black hole evolutions without excision -: art. no. 084023 [J].
Alcubierre, M ;
Brügmann, B ;
Diener, P ;
Koppitz, M ;
Pollney, D ;
Seidel, E ;
Takahashi, R .
PHYSICAL REVIEW D, 2003, 67 (08)
[3]   Fixing Einstein's equations [J].
Anderson, A ;
York, JW .
PHYSICAL REVIEW LETTERS, 1999, 82 (22) :4384-4387
[4]  
ARNOWIT R, 1962, GRAVITATION INTRO CU
[5]   Numerical tests of evolution systems, gauge conditions, and boundary conditions for 1D colliding gravitational plane waves [J].
Bardeen, JM ;
Buchman, LT .
PHYSICAL REVIEW D, 2002, 65 (06)
[6]   Numerical integration of Einstein's field equations [J].
Baumgarte, TW ;
Shapiro, SL .
PHYSICAL REVIEW D, 1999, 59 (02)
[7]   3+1 covariant suite of numerical relativity evolution systems [J].
Bona, C ;
Ledvinka, T ;
Palenzuela, C .
PHYSICAL REVIEW D, 2002, 66 (08)
[8]   HYPERBOLIC EVOLUTION SYSTEM FOR NUMERICAL RELATIVITY [J].
BONA, C ;
MASSO, J .
PHYSICAL REVIEW LETTERS, 1992, 68 (08) :1097-1099
[9]   NEW FORMALISM FOR NUMERICAL RELATIVITY [J].
BONA, C ;
MASSO, J ;
SEIDEL, E ;
STELA, J .
PHYSICAL REVIEW LETTERS, 1995, 75 (04) :600-603
[10]   Einstein's equations with asymptotically stable constraint propagation [J].
Brodbeck, O ;
Frittelli, S ;
Reula, OA .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (02) :909-923