Structural plasticity in Ig superfamily domain 4 of ICAM-1 mediates cell surface dimerization

被引:31
作者
Chen, Xuehui [1 ]
Kim, Thomas Doohun [1 ]
Carman, Christopher V. [1 ]
Mi, Li-Zhi [1 ]
Song, Gang [1 ]
Springer, Timothy A. [1 ]
机构
[1] Harvard Univ, Sch Med, Dept Pathol, Immune Dis Inst, Boston, MA 02115 USA
关键词
crystal structure; leukocytes; flow cytometry; mutagenesis;
D O I
10.1073/pnas.0707406104
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The Ig superfamily (IgSF) intercellular adhesion molecule-1 (ICAM-1) equilibrates between monomeric and dimeric forms on the cell surface, and dimerization enhances cell adhesion. A crystal structure of ICAM-1 IgSF domains (D) 3-5 revealed a unique dimerization interface in which D4s of two protomers fuse through edge P-strands to form a single super beta-sandwich domain. Here, we describe a crystal structure at 2.7-angstrom resolution of monomeric ICAM-1 D3-D5, stabilized by the monomer-specific Fab CA7. CA7 binds to D5 in a region that is buried in the dimeric interface and is distal from the dimerization site in D4. In monomeric ICAM-1 D3-D5, a 16-residue loop in D4 that is disordered in the dimeric structure could clearly be traced as a BC loop, a short C strand, and a CE meander with a cis-Pro followed by a solvent-exposed, flexible four-residue region. Deletions of 6 or 10 residues showed that the C-strand is essential for monomer stability, whereas a distinct six-residue deletion showed little contribution of the CE meander. Mutation of two inward-pointing Leu residues in edge P-strand E to Lys increased monomer stability, confirming the hypothesis that inward-pointing charged side chains on edge beta-strands are an important design feature to prevent beta-supersheet formation. Overall, the studies reveal that monomer-dimer transition is associated with a surprisingly large, physiologically relevant, IgSF domain rearrangement.
引用
收藏
页码:15358 / 15363
页数:6
相关论文
共 29 条
[1]   C-cadherin ectodomain structure and implications for cell adhesion mechanisms [J].
Boggon, TJ ;
Murray, J ;
Chappuis-Flament, S ;
Wong, E ;
Gumbiner, BM ;
Shapiro, L .
SCIENCE, 2002, 296 (5571) :1308-1313
[2]   Crystallography & NMR system:: A new software suite for macromolecular structure determination [J].
Brunger, AT ;
Adams, PD ;
Clore, GM ;
DeLano, WL ;
Gros, P ;
Grosse-Kunstleve, RW ;
Jiang, JS ;
Kuszewski, J ;
Nilges, M ;
Pannu, NS ;
Read, RJ ;
Rice, LM ;
Simonson, T ;
Warren, GL .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1998, 54 :905-921
[3]   Integrin avidity regulation: are changes in affinity and conformation underemphasized? [J].
Carman, CV ;
Springer, TA .
CURRENT OPINION IN CELL BIOLOGY, 2003, 15 (05) :547-556
[4]   A dimeric crystal structure for the N-terminal two domains of intercellular adhesion molecule-1 [J].
Casasnovas, JM ;
Stehle, T ;
Liu, JH ;
Wang, JH ;
Springer, TA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (08) :4134-4139
[5]   Specificity of cell-cell adhesion by classical cadherins:: Critical role for low-affinity dimerization through β-strand swapping [J].
Chen, CP ;
Posy, S ;
Ben-Shaul, A ;
Shapiro, L ;
Honig, BH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (24) :8531-8536
[6]   BINDING OF THE INTEGRIN MAC-1 (CD11B/CD18) TO THE 3RD IMMUNOGLOBULIN-LIKE DOMAIN OF ICAM-1 (CD54) AND ITS REGULATION BY GLYCOSYLATION [J].
DIAMOND, MS ;
STAUNTON, DE ;
MARLIN, SD ;
SPRINGER, TA .
CELL, 1991, 65 (06) :961-971
[7]  
DUSTIN ML, 1999, GUIDEBOOK EXTRACELLU, P216
[8]   USE OF SIMIAN VIRUS-40 REPLICATION TO AMPLIFY EPSTEIN-BARR VIRUS SHUTTLE VECTORS IN HUMAN-CELLS [J].
HEINZEL, SS ;
KRYSAN, PJ ;
CALOS, MP ;
DUBRIDGE, RB .
JOURNAL OF VIROLOGY, 1988, 62 (10) :3738-3746
[9]   Ultrastructure and function of dimeric, soluble intercellular adhesion molecule-1 (ICAM-1) [J].
Jun, CD ;
Carman, CV ;
Redick, SD ;
Shimaoka, M ;
Erickson, HP ;
Springer, TA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (31) :29019-29027
[10]   DICTIONARY OF PROTEIN SECONDARY STRUCTURE - PATTERN-RECOGNITION OF HYDROGEN-BONDED AND GEOMETRICAL FEATURES [J].
KABSCH, W ;
SANDER, C .
BIOPOLYMERS, 1983, 22 (12) :2577-2637