Effect of training datasets on support vector machine prediction of protein-protein interactions

被引:62
作者
Lo, SL
Cai, CZ
Chen, YZ
Chung, MCM
机构
[1] Natl Univ Singapore, Dept Biochem, Singapore 117597, Singapore
[2] Natl Univ Singapore, Bioproc Technol Inst, Singapore 117597, Singapore
[3] Natl Univ Singapore, Dept Computat Sci, Singapore 117597, Singapore
[4] Natl Univ Singapore, Dept Biochem, Singapore 117597, Singapore
关键词
database of interacting proteins; protein function prediction; protein-protein interaction; shuffled sequence; support vector machine; SVMlight;
D O I
10.1002/pmic.200401118
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Knowledge of protein-protein interaction is useful for elucidating protein function via the concept of 'guilt-by-association'. A statistical learning method, Support Vector Machine (SVM), has recently been explored for the prediction of protein-protein interactions using artificial shuffled sequences as hypothetical noninteracting proteins and it has shown promising results (Bock, J. R., Gough, D. A., Bioinformatics 2001, 17, 455-460). It remains unclear however, how the prediction accuracy is affected if real protein sequences are used to represent noninteracting proteins. In this work, this effect is assessed by comparison of the results derived from the use of real protein sequences with that derived from the use of shuffled sequences. The real protein sequences of hypothetical noninteracting proteins are generated from an exclusion analysis in combination with subcellular localization information of interacting proteins found in the Database of Interacting Proteins. Prediction accuracy using real protein sequences is 76.9% compared to 94.1% using artificial shuffled sequences. The discrepancy likely arises from the expected higher level of difficulty for separating two sets of real protein sequences than that for separating a set of real protein sequences from a set of artificial sequences. The use of real protein sequences for training a SVM classification system is expected to give better prediction results in practical cases. This is tested by using both SVM systems for predicting putative protein partners of a set of thioredoxin related proteins. The prediction results are consistent with observations, suggesting that real sequence is more practically useful in development of SVM classification system for facilitating protein-protein interaction prediction.
引用
收藏
页码:876 / 884
页数:9
相关论文
共 45 条
  • [1] BASIC LOCAL ALIGNMENT SEARCH TOOL
    ALTSCHUL, SF
    GISH, W
    MILLER, W
    MYERS, EW
    LIPMAN, DJ
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) : 403 - 410
  • [2] AMER ESJ, 2000, EUR J BIOCHEM, V267, P6102, DOI DOI 10.1046/J.1432-1327.2000.01701.X.PMID:11012661
  • [3] BADER GD, 2003, NUCLEIC ACIDS RES, V3, P248
  • [4] Predicting protein-protein interactions from primary structure
    Bock, JR
    Gough, DA
    [J]. BIOINFORMATICS, 2001, 17 (05) : 455 - 460
  • [5] The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003
    Boeckmann, B
    Bairoch, A
    Apweiler, R
    Blatter, MC
    Estreicher, A
    Gasteiger, E
    Martin, MJ
    Michoud, K
    O'Donovan, C
    Phan, I
    Pilbout, S
    Schneider, M
    [J]. NUCLEIC ACIDS RESEARCH, 2003, 31 (01) : 365 - 370
  • [6] Knowledge-based analysis of microarray gene expression data by using support vector machines
    Brown, MPS
    Grundy, WN
    Lin, D
    Cristianini, N
    Sugnet, CW
    Furey, TS
    Ares, M
    Haussler, D
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (01) : 262 - 267
  • [7] BUNIK VI, 2003, EUR J BIOCHEM, V270, P1036, DOI DOI 10.1046/J.1432-1033.2003.03470.X
  • [8] Drug design by machine learning: support vector machines for pharmaceutical data analysis
    Burbidge, R
    Trotter, M
    Buxton, B
    Holden, S
    [J]. COMPUTERS & CHEMISTRY, 2001, 26 (01): : 5 - 14
  • [9] A tutorial on Support Vector Machines for pattern recognition
    Burges, CJC
    [J]. DATA MINING AND KNOWLEDGE DISCOVERY, 1998, 2 (02) : 121 - 167
  • [10] Shufflers:: shuffling sequences while conserving the k-let counts
    Coward, E
    [J]. BIOINFORMATICS, 1999, 15 (12) : 1058 - 1059