Hormonal control of shoot branching

被引:274
作者
Ongaro, Veronica [1 ]
Leyser, Ottoline [1 ]
机构
[1] Univ York, Dept Biol, York YO10 5YW, N Yorkshire, England
关键词
auxin; cytokinin; DAD; MAX; RMS; shoot branching;
D O I
10.1093/jxb/erm134
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Shoot branching is the process by which axillary buds, located on the axil of a leaf, develop and form new flowers or branches. The process by which a dormant bud activates and becomes an actively growing branch is complex and very finely tuned. Bud outgrowth is regulated by the interaction of environmental signals and endogenous ones, such as plant hormones. Thus these interacting factors have a major effect on shoot system architecture. Hormones known to have a major influence are auxin, cytokinin, and a novel, as yet chemically undefined, hormone. Auxin is actively transported basipetally in the shoot and inhibits bud outgrowth. By contrast, cytokinins travel acropetally and promote bud outgrowth. The novel hormone also moves acropetally but it inhibits bud outgrowth. The aim of this review is to integrate what is known about the hormonal control of shoot branching in Arabidopsis, focusing on these three hormones and their interactions.
引用
收藏
页码:67 / 74
页数:8
相关论文
共 64 条
[1]   Characterization of three members of the Arabidopsis carotenoid cleavage dioxygenase family demonstrates the divergent roles of this multifunctional enzyme family [J].
Auldridge, ME ;
Block, A ;
Vogel, JT ;
Dabney-Smith, C ;
Mila, I ;
Bouzayen, M ;
Magallanes-Lundback, M ;
DellaPenna, D ;
McCarty, DR ;
Klee, HJ .
PLANT JOURNAL, 2006, 45 (06) :982-993
[2]   Hormonally controlled expression of the Arabidopsis MAX4 shoot branching regulatory gene [J].
Bainbridge, K ;
Sorefan, K ;
Ward, S ;
Leyser, O .
PLANT JOURNAL, 2005, 44 (04) :569-580
[3]  
BANGERTH F, 1994, PLANTA, V194, P439, DOI 10.1007/BF00197546
[4]   Mutual interaction of auxin and cytokinins in regulating correlative dominance [J].
Bangerth, F ;
Li, CJ ;
Gruber, J .
PLANT GROWTH REGULATION, 2000, 32 (2-3) :205-217
[5]   The Arabidopsis MAX pathway controls shoot branching by regulating auxin transport [J].
Bennett, T ;
Sieberer, T ;
Willett, B ;
Booker, J ;
Luschnig, C ;
Leyser, O .
CURRENT BIOLOGY, 2006, 16 (06) :553-563
[6]   The rms1 mutant of pea has elevated indole-3-acetic acid levels and reduced root-sap zeatin riboside content but increased branching controlled by graft-transmissible signal(s) [J].
Beveridge, CA ;
Symons, GM ;
Murfet, IC ;
Ross, JJ ;
Rameau, C .
PLANT PHYSIOLOGY, 1997, 115 (03) :1251-1258
[7]   Branching in pea - Action of genes rms3 and rms4 [J].
Beveridge, CA ;
Ross, JJ ;
Murfet, IC .
PLANT PHYSIOLOGY, 1996, 110 (03) :859-865
[8]   BRANCHING MUTANT RMS-2 IN PISUM-SATIVUM - GRAFTING STUDIES AND ENDOGENOUS INDOLE-3-ACETIC-ACID LEVELS [J].
BEVERIDGE, CA ;
ROSS, JJ ;
MURFET, IC .
PLANT PHYSIOLOGY, 1994, 104 (03) :953-959
[9]   Long-distance signalling and a mutational analysis of branching in pea [J].
Beveridge, CA .
PLANT GROWTH REGULATION, 2000, 32 (2-3) :193-203
[10]   Auxin inhibition of decapitation-induced branching is dependent on graft-transmissible signals regulated by genes rms1 and rms2 [J].
Beveridge, CA ;
Symons, GM ;
Turnbull, CGN .
PLANT PHYSIOLOGY, 2000, 123 (02) :689-697