Sulfiredoxin, the cysteine sulfinic acid reductase specific to 2-Cys peroxiredoxin: its discovery, mechanism of action, and biological significance

被引:124
作者
Rhee, S. G. [1 ]
Jeong, W. [1 ]
Chang, T-S [1 ]
Woo, H. A. [1 ]
机构
[1] Ewha Womans Univ, Div Life & Pharmaceut Sci, Seoul 120750, South Korea
关键词
peroxiredoxin; sulfiredoxin; cysteine sulfinic acid reductase; hydrogen peroxide; chaperone; sulfinylation;
D O I
10.1038/sj.ki.5002380
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
Peroxiredoxin (Prx) is a family of bifunctional proteins that exhibit peroxidase and chaperone activities. Prx proteins contain a conserved Cys residue that undergoes a redox change between thiol and disulfide states. 2-Cys Prx enzymes, a subgroup of Prx family, are intrinsically susceptible to reversible hyperoxidation to cysteine sulfinic acid during catalysis. Cysteine hyperoxidation of Prx was shown to result in loss of peroxidase activity and a concomitant gain of chaperone activity. Reduction of sulfinic Prx enzymes, the first known biological example of such a reaction, is catalyzed by sulfiredoxin (Srx) in the presence of ATP. Srx appears to exist solely to support the reversible sulfinic modification of 2-Cys Prx enzymes. Srx specifically binds to 2-Cys Prx enzymes by recognizing several critical surface-exposed residues of the Prxs, and transfer the gamma-phosphate of ATP to their sulfinic moiety, using its conserved cysteine as the phosphate carrier. The resulting sulfinic phosphoryl ester is reduced to cysteine after oxidation of four thiol equivalents.
引用
收藏
页码:S3 / S8
页数:6
相关论文
共 49 条
[1]   The structure of reduced tryparedoxin peroxidase reveals a decamer and insight into reactivity of 2Cys-peroxiredoxins [J].
Alphey, MS ;
Bond, CS ;
Tetaud, E ;
Fairlamb, AH ;
Hunter, WN .
JOURNAL OF MOLECULAR BIOLOGY, 2000, 300 (04) :903-916
[2]   Evolution of eukaryotic cysteine sulfinic acid reductase, sulfiredoxin (Srx), from bacterial chromosome partitioning protein ParB [J].
Basu, MK ;
Koonin, EV .
CELL CYCLE, 2005, 4 (07) :947-952
[3]   ATP-dependent reduction of cysteine-sulphinic acid by S-cerevisiae sulphiredoxin [J].
Biteau, B ;
Labarre, J ;
Toledano, MB .
NATURE, 2003, 425 (6961) :980-984
[4]   Oxidation of a eukaryotic 2-Cys peroxiredoxin is a molecular switch controlling the transcriptional response to increasing levels of hydrogen peroxide [J].
Bozonet, SM ;
Findlay, VJ ;
Day, AM ;
Cameron, J ;
Veal, EA ;
Morgan, BA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (24) :23319-23327
[5]   Diethylmaleate activates the transcription factor Pap1 by covalent modification of critical cysteine residues [J].
Castillo, EA ;
Ayté, J ;
Chiva, C ;
Moldón, A ;
Carrascal, M ;
Abián, J ;
Jones, N ;
Hidalgo, E .
MOLECULAR MICROBIOLOGY, 2002, 45 (01) :243-254
[6]   CLONING AND SEQUENCING OF THIOL-SPECIFIC ANTIOXIDANT FROM MAMMALIAN BRAIN - ALKYL HYDROPEROXIDE REDUCTASE AND THIOL-SPECIFIC ANTIOXIDANT DEFINE A LARGE FAMILY OF ANTIOXIDANT ENZYMES [J].
CHAE, HZ ;
ROBISON, K ;
POOLE, LB ;
CHURCH, G ;
STORZ, G ;
RHEE, SG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (15) :7017-7021
[7]  
CHAE HZ, 1994, J BIOL CHEM, V269, P27670
[8]   Characterization of three isoforms of mammalian peroxiredoxin that reduce peroxides in the presence of thioredoxin [J].
Chae, HZ ;
Kim, HJ ;
Kang, SW ;
Rhee, SG .
DIABETES RESEARCH AND CLINICAL PRACTICE, 1999, 45 (2-3) :101-112
[9]   DIMERIZATION OF THIOL-SPECIFIC ANTIOXIDANT AND THE ESSENTIAL ROLE OF CYSTEINE-47 [J].
CHAE, HZ ;
UHM, TB ;
RHEE, SG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (15) :7022-7026
[10]   Characterization of mammalian sulfiredoxin and its reactivation of hyperoxidized peroxiredoxin through reduction of cysteine sulfinic acid in the active site to cysteine [J].
Chang, TS ;
Jeong, W ;
Woo, HA ;
Lee, SM ;
Park, S ;
Rhee, SG .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (49) :50994-51001