Enzyme-Doped Graphene Nanosheets for Enhanced Glucose Biosensing

被引:250
作者
Alwarappan, Subbiah [1 ]
Liu, Chang [1 ]
Kumar, Ashok [2 ]
Li, Chen-Zhong [1 ]
机构
[1] Florida Int Univ, Dept Biomed Engn, Nanobioengn Bioelect Lab, 10555 W Hagler St, Miami, FL 33172 USA
[2] Univ S Florida, Nanomat Res & Educ Ctr, Tampa, FL 33620 USA
关键词
SIMPLE FABRICATION; CARBON; OXIDASE; SENSOR; ELECTROCHEMISTRY; NANOELECTRODE; FILMS; GAS;
D O I
10.1021/jp103273z
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, we report the enhanced performance of polypyrrole-graphene-glucose oxidase based enzymatic biosensors employed for in vitro electrochemical glucose detection. Initially, graphene nanosheets were chemically synthesized and surface morphologies were characterized by several physical methods. Following this, graphene nanosheets were covalently conjugated to an enzyme model glucose oxidase (GOD). The presence of various reactive functionalities such as ketonic, quinonic, and carboxylic functional groups on the edge plane of graphene easily binds with the free amine terminals of the glucose oxidase to result in a strong covalent amide linkage. Further, this covalent conjugation of the enzyme to graphene was confirmed by FT-IR measurements. Following this, the surface of a glassy carbon electrode was modified by polypyrrole. Later, the conjugated graphene-GOD were then immobilized onto the glassy carbon electrode surface already modified with polypyrrole (Ppy) and the entire assembly was employed for glucose detection. Results indicated that the electrodes immobilized with graphene conjugated to GOD exhibited a better sensitivity and response time than the electrodes immobilized with graphene alone. The observed results indicate that the 2D graphene holds great promise to be conjugated with a variety of enzymes. Besides conjugation, the entrapment of graphene-GOD within the porous structure of Ppy will hold the enzyme in a favorable position, thereby retaining the original structure and functionality of the enzymes that account for high-performance biosensing.
引用
收藏
页码:12920 / 12924
页数:5
相关论文
共 43 条
[1]   Effect of disorder on transport in graphene [J].
Aleiner, I. L. ;
Efetov, K. B. .
PHYSICAL REVIEW LETTERS, 2006, 97 (23)
[2]   Probing the Electrochemical Properties of Graphene Nanosheets for Biosensing Applications [J].
Alwarappan, Subbiah ;
Erdem, Arzum ;
Liu, Chang ;
Li, Chen-Zhong .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (20) :8853-8857
[3]   The Effect of Electrochemical Pretreatment on the Sensing Performance of Single Walled Carbon Nanotubes [J].
Alwarappan, Subbiah ;
Prabhulkar, Shradha ;
Durygin, Andriy ;
Li, Chen-Zhong .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2009, 9 (05) :2991-2996
[4]  
Davidson M. B., 2001, Diabetes Spectrum, V14, P67, DOI 10.2337/diaspect.14.2.67
[5]   Raman spectroscopy on isolated single wall carbon nanotubes [J].
Dresselhaus, MS ;
Dresselhaus, G ;
Jorio, A ;
Souza, AG ;
Saito, R .
CARBON, 2002, 40 (12) :2043-2061
[6]   Raman spectroscopy of carbon nanotubes [J].
Dresselhaus, MS ;
Dresselhaus, G ;
Saito, R ;
Jorio, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2005, 409 (02) :47-99
[7]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)
[8]   Electrochemistry of conductive polymers XXXV: Electrical and morphological characteristics of polypyrrole films prepared in aqueous media studied by current sensing atomic force microscopy [J].
Han, DH ;
Lee, HJ ;
Park, SM .
ELECTROCHIMICA ACTA, 2005, 50 (15) :3085-3092
[9]   Bipolar supercurrent in graphene [J].
Heersche, Hubert B. ;
Jarillo-Herrero, Pablo ;
Oostinga, Jeroen B. ;
Vandersypen, Lieven M. K. ;
Morpurgo, Alberto F. .
NATURE, 2007, 446 (7131) :56-59
[10]   PREPARATION OF GRAPHITIC OXIDE [J].
HUMMERS, WS ;
OFFEMAN, RE .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1958, 80 (06) :1339-1339