High power performance of nano-LiFePO4/C cathode material synthesized via lauric acid-assisted solid-state reaction

被引:70
作者
Cheng, Fuquan [1 ]
Wan, Wang [1 ]
Tan, Zhuo [1 ,2 ]
Huang, Youyuan [1 ]
Zhou, Henghui [1 ]
Chen, Jitao [1 ]
Zhang, Xinxiang [1 ]
机构
[1] Peking Univ, Coll Chem & Mol Engn, Beijing 100871, Peoples R China
[2] Xiangtan Univ, Coll Chem, Xiangtan 411105, Hunan, Peoples R China
基金
国家高技术研究发展计划(863计划);
关键词
Lithium-ion batteries; LiFePO4/C composite; Lauric acid; Solid-state reaction; LITHIUM IRON PHOSPHATE; LIFEPO4; NANOPARTICLES; BATTERIES; IMPACT;
D O I
10.1016/j.electacta.2011.01.007
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A nano-LiFePO4/C composite has been directly synthesized from micrometer-sized Li2CO3, NH4H2PO4, and FeC2O4.2H(2)O by the lauric acid-assisted solid-state reaction method. The SEM and TEM observations demonstrate that the synthesized nano-LiFePO4/C composite has well-dispersed particles with a size of about 100-200 nm and an in situ carbon layer with thickness of about 2 nm. The prepared nano-LiFePO4/C composite has superior rate capability, delivering a discharge capacity of 141.2 mAh g(-1) at 5 degrees C. 130.9 mAh g(-1) at 10 degrees C, 121.7 mAh g(-1) at 20 degrees C, and 112.4 mAh g(-1) at 30 degrees C. At 20 degrees C, this cathode material still exhibits good rate capability with a discharge capacity of 91.9 mAh g(-1) at 1 degrees C. The nanoLiFePO(4)/C composite also shows excellent cycling ability with good capacity retention, up to 100 cycles at a high current density of 30 degrees C. Furthermore, the effect of lauric acid in the preparation of nanoLiFePO(4)/C composite was investigated by comparing it with that of citric acid. The SEM images reveal that the morphology of the LiFePO4/C composite transformed from the porous structure to fine particles as the molar ratio of lauric acid/citric acid increased. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2999 / 3005
页数:7
相关论文
共 27 条
[1]   Silicon-Doped LiFePO4 Single Crystals: Growth, Conductivity Behavior, and Diffusivity [J].
Amin, Ruhul ;
Lin, Chengtian ;
Peng, Jubo ;
Weichert, Katja ;
Acartuerk, Tolga ;
Starke, Ulrich ;
Maier, Joachim .
ADVANCED FUNCTIONAL MATERIALS, 2009, 19 (11) :1697-1704
[2]   Fine-particle lithium iron phosphate LiFePO4 synthesized by a new low-cost aqueous precipitation technique [J].
Arnold, G ;
Garche, J ;
Hemmer, R ;
Ströbele, S ;
Vogler, C ;
Wohlfahrt-Mehrens, A .
JOURNAL OF POWER SOURCES, 2003, 119 :247-251
[3]   LiMnPO4 Nanoplate Grown via Solid-State Reaction in Molten Hydrocarbon for Li-Ion Battery Cathode [J].
Choi, Daiwon ;
Wang, Donghai ;
Bae, In-Tae ;
Xiao, Jie ;
Nie, Zimin ;
Wang, Wei ;
Viswanathan, Vilayanur V. ;
Lee, Yun Jung ;
Zhang, Ji-Guang ;
Graff, Gordon L. ;
Yang, Zhenguo ;
Liu, Jun .
NANO LETTERS, 2010, 10 (08) :2799-2805
[4]   Preparation of nano-structured LiFePO4/graphene composites by co-precipitation method [J].
Ding, Y. ;
Jiang, Y. ;
Xu, F. ;
Yin, J. ;
Ren, H. ;
Zhuo, Q. ;
Long, Z. ;
Zhang, P. .
ELECTROCHEMISTRY COMMUNICATIONS, 2010, 12 (01) :10-13
[5]   Hierarchically Porous Monolithic LiFePO4/Carbon Composite Electrode Materials for High Power Lithium Ion Batteries [J].
Doherty, Cara M. ;
Caruso, Rachel A. ;
Smarsly, Bernd M. ;
Adelhelm, Philipp ;
Drummond, Calum J. .
CHEMISTRY OF MATERIALS, 2009, 21 (21) :5300-5306
[6]   Impact of the carbon coating thickness on the electrochemical performance of LiFePO4/C composites [J].
Dominko, R ;
Bele, M ;
Gaberscek, M ;
Remskar, M ;
Hanzel, D ;
Pejovnik, S ;
Jamnik, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (03) :A607-A610
[7]   Wired porous cathode materials:: A novel concept for synthesis of LiFePO4 [J].
Dominko, Robert ;
Bele, Marjan ;
Goupil, Jean-Michel ;
Gaberscek, Miran ;
Hanzel, Darko ;
Arcon, Iztok ;
Jamnik, Janez .
CHEMISTRY OF MATERIALS, 2007, 19 (12) :2960-2969
[8]   Comparison between different LiFePO4 synthesis routes and their influence on its physico-chemical properties [J].
Franger, S ;
Le Cras, F ;
Bourbon, C ;
Rouault, H .
JOURNAL OF POWER SOURCES, 2003, 119 :252-257
[9]   Improved electrode performance of porous LiFePO4 using RuO2 as an oxidic nanoscale interconnect [J].
Hu, Yong-Sheng ;
Guo, Yu-Guo ;
Dominko, Robert ;
Gaberscek, Miran ;
Jamnik, Janko ;
Maier, Joachim .
ADVANCED MATERIALS, 2007, 19 (15) :1963-+
[10]   High-Rate LiFePO4 Lithium Rechargeable Battery Promoted by Electrochemically Active Polymers [J].
Huang, Yun-Hui ;
Goodenough, John B. .
CHEMISTRY OF MATERIALS, 2008, 20 (23) :7237-7241