Dense Crystalline Dimer Packings of Regular Tetrahedra

被引:88
作者
Chen, Elizabeth R. [2 ]
Engel, Michael [1 ]
Glotzer, Sharon C. [1 ,3 ]
机构
[1] Univ Michigan, Dept Chem Engn, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
Crystallography; Packing; Regular solid; Hilbert problem; NANOPARTICLES;
D O I
10.1007/s00454-010-9273-0
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present the densest known packing of regular tetrahedra with density phi = 4000/4671 = 0.856341 .... Like the recently discovered packings of Kallus et al. and Torquato-Jiao, our packing is crystalline with a unit cell of four tetrahedra forming two triangular dipyramids (dimer clusters). We show that our packing has maximal density within a three-parameter family of dimer packings. Numerical compressions starting from random configurations suggest that the packing may be optimal at least for small cells with up to 16 tetrahedra and periodic boundaries.
引用
收藏
页码:253 / 280
页数:28
相关论文
共 26 条
[1]   Densest lattice packings of 3-polytopes [J].
Betke, U ;
Henk, M .
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2000, 16 (03) :157-186
[2]  
CHAIKIN P, 2007, AM PHYS SOC MARCH M
[3]   A dense packing of regular tetrahedra [J].
Chen, Elizabeth R. .
DISCRETE & COMPUTATIONAL GEOMETRY, 2008, 40 (02) :214-240
[4]  
CHEN ER, 2010, ARXIV10010586
[5]  
CHEN ER, 2010, THESIS U MICHIGAN
[6]   Packing, tiling, and covering with tetrahedra [J].
Conway, J. H. ;
Torquato, S. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (28) :10612-10617
[7]  
Frenkel D., 1996, UNDERSTANDING MOL SI, DOI DOI 10.1016/B978-0-12-267351-1.X5000-7
[8]  
Gardner M., 2001, The Colossal Book of Mathematics: Classic Puzzles, Paradoxes, and Problems
[9]  
Gromer H., 1962, Mon. Math, V66, P12
[10]  
Hahn T., 2002, Int. Tables Crystallogr, VA, DOI [DOI 10.1107/97809553602060000100, DOI 10.1107/97809553602060000505]