Quantum morphogenesis: A variation on Thom's catastrophe theory

被引:25
作者
Aerts, D
Czachor, M
Gabora, L
Kuna, M
Posiewnik, A
Pykacz, J
Syty, M
机构
[1] Free Univ Brussels, Ctr Leo Apostel, B-1050 Brussels, Belgium
[2] Free Univ Brussels, Fdn Exact Sci, B-1050 Brussels, Belgium
[3] Gdansk Univ Technol, Wydzial Fiz Tech & Matemat Stosowanej, PL-80952 Gdansk, Poland
[4] Univ Gdansk, Wydzial Fiz & Matemat, PL-80952 Gdansk, Poland
来源
PHYSICAL REVIEW E | 2003年 / 67卷 / 05期
关键词
D O I
10.1103/PhysRevE.67.051926
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Noncommutative propositions are characteristic of both quantum and nonquantum (sociological, biological, and psychological) situations. In a Hilbert space model, states, understood as correlations between all the possible propositions, are represented by density matrices. If systems in question interact via feedback with environment, their dynamics is nonlinear. Nonlinear evolutions of density matrices lead to the phenomenon of morphogenesis that may occur in noncommutative systems. Several explicit exactly solvable models are presented, including "birth and death of an organism" and "development of complementary properties."
引用
收藏
页数:13
相关论文
共 39 条
[21]   COMPUTING WITH NEURAL CIRCUITS - A MODEL [J].
HOPFIELD, JJ ;
TANK, DW .
SCIENCE, 1986, 233 (4764) :625-633
[22]   Separability of mixed states: Necessary and sufficient conditions [J].
Horodecki, M ;
Horodecki, P ;
Horodecki, R .
PHYSICS LETTERS A, 1996, 223 (1-2) :1-8
[23]  
HOWARD LN, 1977, STUD APPL MATH, V56, P95
[24]  
Kauffman S., 1993, The Origins of Order
[25]   A MODEL OF HEAD REGENERATION IN HYDRA [J].
KEMMNER, W .
DIFFERENTIATION, 1984, 26 (02) :83-90
[26]   Darboux-integrable nonlinear Liouville-von Neumann equation [J].
Leble, SB ;
Czachor, M .
PHYSICAL REVIEW E, 1998, 58 (06) :7091-7100
[27]   What is quantum mechanics trying to tell us? [J].
Mermin, ND .
AMERICAN JOURNAL OF PHYSICS, 1998, 66 (09) :753-767
[28]  
Murray JD., 1977, NONLINEAR DIFFERENTI
[29]   Separability criterion for density matrices [J].
Peres, A .
PHYSICAL REVIEW LETTERS, 1996, 77 (08) :1413-1415
[30]  
Piotrowski EW, 2001, ACTA PHYS POL B, V32, P3873