The role of mitochondrial oxidative stress in aging

被引:255
作者
Sastre, J [1 ]
Pallardó, FV [1 ]
Viña, J [1 ]
机构
[1] Univ Valencia, Fac Med, Dept Fisiol, Valencia 46010, Spain
关键词
glutathione; DNA oxidative damage; mitochondrial mutations; apoptosis; senescence; free radicals;
D O I
10.1016/S0891-5849(03)00184-9
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mitochondria are both a major source of oxidants and a target for their damaging effects, and, therefore, mitochondrial oxidative stress appears to be a cause, rather than a consequence, of cell aging. Oxidative damage in aging is particularly high in specific molecular targets, such as mitochondrial DNA and aconitase, and mitochondrial oxidative stress may drive tissue aging through intrinsic apoptosis. Mitochondrial function and morphology are impaired upon aging, as judged by a decline in membrane potential as well as by an increase in peroxide production and size of the organelles. In view of the age-related decreases in mitochondrial protein synthesis, mitochondrial transcripts, and expression of genes involved in mitochondrial turnover, the rate of this turnover might determine its susceptibility of mitochondria to oxidative damage and mutation, thus controlling the rate of cell aging. In fact, aging is a feature of differentiated somatic cells, especially postmitotic cells such as neurons or muscle cells. The age-associated mitochondrial DNA deletions focally accumulate in brain and skeletal muscle, thus contributing significantly to aging of these postmitotic tissues. Expansion of mitochondrial DNA mutations may occur through mitochondrial complementation. The use of mutants of the mitochondrial electron transport system, as well as knockouts or transgenics of mitochondrial antioxidants or repair enzymes, may provide clear-cut evidence of the precise mitochondrial mechanisms that control the rate of cell aging. (C) 2003 Elsevier Inc.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 64 条
[1]   Mitochondrial endogenous oxidative damage has been overestimated [J].
Anson, RM ;
Hudson, E ;
Bohr, VA .
FASEB JOURNAL, 2000, 14 (02) :355-360
[2]   A HIGH-PERFORMANCE LIQUID-CHROMATOGRAPHY METHOD FOR MEASUREMENT OF OXIDIZED GLUTATHIONE IN BIOLOGICAL SAMPLES [J].
ASENSI, M ;
SASTRE, J ;
PALLARDO, FV ;
DELAASUNCION, JG ;
ESTRELA, JM ;
VINA, J .
ANALYTICAL BIOCHEMISTRY, 1994, 217 (02) :323-328
[3]   Oxidative damage to mitochondrial DNA is inversely related to maximum life span in the heart and brain of mammals [J].
Barja, G ;
Herrero, A .
FASEB JOURNAL, 2000, 14 (02) :312-318
[4]   LOW MITOCHONDRIAL FREE-RADICAL PRODUCTION PER UNIT O-2 CONSUMPTION CAN EXPLAIN THE SIMULTANEOUS PRESENCE OF HIGH LONGEVITY AND HIGH AEROBIC METABOLIC-RATE IN BIRDS [J].
BARJA, G ;
CADENAS, S ;
ROJAS, C ;
PEREZCAMPO, R ;
LOPEZTORRES, M .
FREE RADICAL RESEARCH, 1994, 21 (05) :317-327
[5]   STRUCTURE AND FUNCTION OF TELOMERES [J].
BLACKBURN, EH .
NATURE, 1991, 350 (6319) :569-573
[6]   Membrane potential generation coupled to oxidation of external NADH in liver mitochondria [J].
Bodrova, ME ;
Dedukhova, VI ;
Mokhova, EN ;
Skulachev, VP .
FEBS LETTERS, 1998, 435 (2-3) :269-274
[7]  
Branicky R, 2000, BIOESSAYS, V22, P48, DOI 10.1002/(SICI)1521-1878(200001)22:1&lt
[8]  
48::AID-BIES9&gt
[9]  
3.0.CO
[10]  
2-F