From atomic to superstring scale in a braided Cantorian E∞ space

被引:4
作者
El Naschie, MS
机构
[1] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 9EW, England
[2] Free Univ Brussels, Solvay Inst, Brussels, Belgium
关键词
D O I
10.1016/S0960-0779(00)00105-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present note we show how to generate the length (energy) spectrum of the most dominant particles located between the classical microscale and the critical Planck scale. This is achieved here using two fundamental and several derived scaling exponents. These exponents are extracted from the basic geometrical structure of the zero-brane-like Cantorian E-(infinity) space and certain consistency requirements with regard to John's theory of knots and subfactors. (C) 2001 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1439 / 1448
页数:10
相关论文
共 15 条
[1]  
CASTRO C, CHAOS SOLITONS FRACT, V10
[2]   On the unification of the fundamental forces and complex time in the ε(∞) space [J].
El Naschie, MS .
CHAOS SOLITONS & FRACTALS, 2000, 11 (07) :1149-1162
[3]   Towards a geometrical theory for the unification of all fundamental forces [J].
El Naschie, MS .
CHAOS SOLITONS & FRACTALS, 2000, 11 (09) :1459-1469
[4]   Semiclassical dimensions, quantum groups and the Cantorian manifold [J].
El Naschie, MS .
CHAOS SOLITONS & FRACTALS, 2000, 11 (07) :1137-1144
[5]   Theoretical derivation and experimental confirmation of the topology of transfinite heterotic strings [J].
El Naschie, MS .
CHAOS SOLITONS & FRACTALS, 2001, 12 (06) :1167-1174
[6]  
El Naschie MS, 1999, CHAOS SOLITON FRACT, V10, P43, DOI 10.1016/S0960-0779(98)00229-X
[7]   A general theory for the topology of transfinite heterotic strings and quantum gravity [J].
El Naschie, MS .
CHAOS SOLITONS & FRACTALS, 2001, 12 (05) :969-988
[8]   On a general theory for quantum-gravity interaction and an experimental confirmation of heterotic strings [J].
El Naschie, MS .
CHAOS SOLITONS & FRACTALS, 2001, 12 (05) :875-880
[9]   DIMENSIONS AND CANTOR SPECTRA [J].
ELNASCHIE, MS .
CHAOS SOLITONS & FRACTALS, 1994, 4 (11) :2121-2132
[10]  
ELNASCHIE MS, 1998, INT J THEOR PHYS, V37