Long noncoding RNA genes: conservation of sequence and brain expression among diverse amniotes

被引:197
作者
Chodroff, Rebecca A. [1 ,2 ]
Goodstadt, Leo [3 ]
Sirey, Tamara M. [1 ]
Oliver, Peter L. [3 ]
Davies, Kay E. [1 ,3 ]
Green, Eric D. [2 ]
Molnar, Zoltan [1 ]
Ponting, Chris P. [1 ,3 ]
机构
[1] Univ Oxford, Dept Physiol Anat & Genet, Oxford OX1 3QX, England
[2] NHGRI, Genome Technol Branch, NIH, Bethesda, MD 20892 USA
[3] Univ Oxford, MRC, Funct Genom Unit, Oxford OX1 3QX, England
来源
GENOME BIOLOGY | 2010年 / 11卷 / 07期
基金
美国国家卫生研究院; 英国生物技术与生命科学研究理事会; 英国医学研究理事会; 欧洲研究理事会;
关键词
MOUSE; GENOME; IDENTIFICATION; TRANSCRIPTION; NEOCORTEX; NEUROGENESIS; ANNOTATION; VERTEBRATE; EVOLUTION; 1-PERCENT;
D O I
10.1186/gb-2010-11-7-r72
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Long considered to be the building block of life, it is now apparent that protein is only one of many functional products generated by the eukaryotic genome. Indeed, more of the human genome is transcribed into noncoding sequence than into protein-coding sequence. Nevertheless, whilst we have developed a deep understanding of the relationships between evolutionary constraint and function for protein-coding sequence, little is known about these relationships for non-coding transcribed sequence. This dearth of information is partially attributable to a lack of established non-protein-coding RNA (ncRNA) orthologs among birds and mammals within sequence and expression databases. Results: Here, we performed a multi-disciplinary study of four highly conserved and brain-expressed transcripts selected from a list of mouse long intergenic noncoding RNA (lncRNA) loci that generally show pronounced evolutionary constraint within their putative promoter regions and across exon-intron boundaries. We identify some of the first lncRNA orthologs present in birds (chicken), marsupial (opossum), and eutherian mammals (mouse), and investigate whether they exhibit conservation of brain expression. In contrast to conventional protein-coding genes, the sequences, transcriptional start sites, exon structures, and lengths for these non-coding genes are all highly variable. Conclusions: The biological relevance of lncRNAs would be highly questionable if they were limited to closely related phyla. Instead, their preservation across diverse amniotes, their apparent conservation in exon structure, and similarities in their pattern of brain expression during embryonic and early postnatal stages together indicate that these are functional RNA molecules, of which some have roles in vertebrate brain development.
引用
收藏
页数:16
相关论文
共 69 条
  • [1] The eukaryotic genome as an RNA machine
    Amaral, Paulo P.
    Dinger, Marcel E.
    Mercer, Tim R.
    Mattick, John S.
    [J]. SCIENCE, 2008, 319 (5871) : 1787 - 1789
  • [2] Complex architecture and regulated expression of the Sox2ot locus during vertebrate development
    Amaral, Paulo P.
    Neyt, Christine
    Wilkins, Simon J.
    Askarian-Amiri, Marjan E.
    Sunkin, Susan M.
    Perkins, Andrew C.
    Mattick, John S.
    [J]. RNA, 2009, 15 (11) : 2013 - 2027
  • [3] [Anonymous], 1992, PRACTICAL APPROACHES
  • [4] A systematic search for new mammalian noncoding RNAs indicates little conserved intergenic transcription
    Babak, T
    Blencowe, BJ
    Hughes, TR
    [J]. BMC GENOMICS, 2005, 6 (1)
  • [5] Applications of DNA tiling arrays to experimental genome annotation and regulatory pathway discovery
    Bertone, P
    Gerstein, M
    Snyder, M
    [J]. CHROMOSOME RESEARCH, 2005, 13 (03) : 259 - 274
  • [6] Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project
    Birney, Ewan
    Stamatoyannopoulos, John A.
    Dutta, Anindya
    Guigo, Roderic
    Gingeras, Thomas R.
    Margulies, Elliott H.
    Weng, Zhiping
    Snyder, Michael
    Dermitzakis, Emmanouil T.
    Stamatoyannopoulos, John A.
    Thurman, Robert E.
    Kuehn, Michael S.
    Taylor, Christopher M.
    Neph, Shane
    Koch, Christoph M.
    Asthana, Saurabh
    Malhotra, Ankit
    Adzhubei, Ivan
    Greenbaum, Jason A.
    Andrews, Robert M.
    Flicek, Paul
    Boyle, Patrick J.
    Cao, Hua
    Carter, Nigel P.
    Clelland, Gayle K.
    Davis, Sean
    Day, Nathan
    Dhami, Pawandeep
    Dillon, Shane C.
    Dorschner, Michael O.
    Fiegler, Heike
    Giresi, Paul G.
    Goldy, Jeff
    Hawrylycz, Michael
    Haydock, Andrew
    Humbert, Richard
    James, Keith D.
    Johnson, Brett E.
    Johnson, Ericka M.
    Frum, Tristan T.
    Rosenzweig, Elizabeth R.
    Karnani, Neerja
    Lee, Kirsten
    Lefebvre, Gregory C.
    Navas, Patrick A.
    Neri, Fidencio
    Parker, Stephen C. J.
    Sabo, Peter J.
    Sandstrom, Richard
    Shafer, Anthony
    [J]. NATURE, 2007, 447 (7146) : 799 - 816
  • [7] Aligning multiple genomic sequences with the threaded blockset aligner
    Blanchette, M
    Kent, WJ
    Riemer, C
    Elnitski, L
    Smit, AFA
    Roskin, KM
    Baertsch, R
    Rosenbloom, K
    Clawson, H
    Green, ED
    Haussler, D
    Miller, W
    [J]. GENOME RESEARCH, 2004, 14 (04) : 708 - 715
  • [8] Identification of Pax2-regulated genes by expression profiling of the mid-hindbrain organizer region
    Bouchard, M
    Grote, D
    Craven, SE
    Sun, G
    Steinlein, P
    Busslinger, M
    [J]. DEVELOPMENT, 2005, 132 (11): : 2633 - 2643
  • [9] LIM-homeodomain gene Lhx2 regulates the formation of the cortical hem
    Bulchand, S
    Grove, EA
    Porter, FD
    Tole, S
    [J]. MECHANISMS OF DEVELOPMENT, 2001, 100 (02) : 165 - 175
  • [10] Constructing the landscape of the mammalian transcriptome
    Carninci, Piero
    [J]. JOURNAL OF EXPERIMENTAL BIOLOGY, 2007, 210 (09) : 1497 - 1506