Minimax adjustment technique in a parameter restricted linear model

被引:5
作者
Stahlecker, P
Knautz, H
Trenkler, G
机构
[1] UNIV HAMBURG,DEPT ECON,W-2000 HAMBURG,GERMANY
[2] UNIV DORTMUND,DEPT STAT,DORTMUND,GERMANY
关键词
linear regression; minimax adjustment; projection estimator;
D O I
10.1007/BF00046994
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider an approach yielding a minimax estimator in the linear regression model with a priori information on the parameter vector, e.g., ellipsoidal restrictions. This estimator is computed directly from the loss function and can be motivated by the general Pitman nearness criterion. It turns out that this approach coincides with the projection estimator which is obtained by projecting an initial arbitrary estimate on the subset defined by the restrictions.
引用
收藏
页码:139 / 144
页数:6
相关论文
共 8 条
[1]   PITMAN CLOSENESS COMPARISON OF LINEAR ESTIMATORS - A CANONICAL FORM [J].
FOUNTAIN, RL .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1991, 20 (11) :3535-3550
[2]  
Pilz J., 1991, Bayesian estimation and experimental design in linear regression models
[3]   The "closest" estimates of statistical parameters [J].
Pitman, EJG .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1937, 33 :212-222
[4]  
Rothenberg Thomas J., 1973, EFFICIENT ESTIMATION
[5]   REDUCING THE MAXIMUM RISK OF REGRESSION-ESTIMATORS BY POLYHEDRAL PROJECTION [J].
SCHMIDT, K ;
STAHLECKER, P .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1995, 52 (01) :1-15
[6]   MINIMAX ESTIMATION IN LINEAR-REGRESSION WITH SINGULAR COVARIANCE STRUCTURE AND CONVEX POLYHEDRAL CONSTRAINTS [J].
STAHLECKER, P ;
TRENKLER, G .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1993, 36 (2-3) :185-196
[7]  
STAHLECKER P, 1987, MATH SYSTEMS EC, V108
[8]  
[No title captured]