A field theory study of the effect of specific interactions in ionic systems: A simple model

被引:27
作者
di Caprio, D
Stafiej, J
Badiali, JP
机构
[1] Univ Paris 06, F-75230 Paris 05, France
[2] Polish Acad Sci, Inst Phys Chem, Dept Electrode Proc, PL-01224 Warsaw, Poland
关键词
D O I
10.1063/1.476286
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The effect of specific ionic interactions on the Debye length has been studied using a simple model Hamiltonian for a binary mixture of anions and cations in the framework of the field theory. The Hamiltonian contains the Coulombic interaction and an independent non-Coulombic part describing a binary mixture of equivalent uncharged particles. We use a local and quadratic approximation to calculate the partition function via a functional integral. The Debye limiting law is obtained with a renormalized screening length. The screening is enhanced when the specific interactions favor demixion. This is illustrated on the example of an asymmetric hard sphere mixture. (C) 1998 American Institute of Physics. [S0021-9606(98)51320-7].
引用
收藏
页码:8572 / 8583
页数:12
相关论文
共 19 条
[11]   THE STATISTICAL MECHANICAL THEORY OF SOLUTIONS .1. [J].
KIRKWOOD, JG ;
BUFF, FP .
JOURNAL OF CHEMICAL PHYSICS, 1951, 19 (06) :774-777
[12]  
KUIJPER A, 1990, EPL-EUROPHYS LETT, V13, P679
[13]  
MUNOZ F, 1993, J CHEM PHYS, V99, P5439
[14]   CORRELATION-FUNCTIONS FOR THE ELECTROLYTE NEAR THE CRITICAL-POINT OF PURE SOLVENT [J].
NABUTOVSKII, VM ;
NEMOV, NA ;
PEISAKHOVICH, YG .
MOLECULAR PHYSICS, 1985, 54 (04) :979-987
[15]  
PARISI G, 1988, FRONTIERS PHYSICS, V66
[16]   NEW, THERMODYNAMICALLY CONSISTENT, INTEGRAL-EQUATION FOR SIMPLE FLUIDS [J].
ROGERS, FJ ;
YOUNG, DA .
PHYSICAL REVIEW A, 1984, 30 (02) :999-1007
[17]   A simple model for Coulombic systems. Thermodynamics, correlation functions and criticality [J].
Stafiej, J ;
Badiali, JP .
JOURNAL OF CHEMICAL PHYSICS, 1997, 106 (20) :8579-8586
[18]   CRITICALITY AND PHASE-TRANSITIONS IN IONIC FLUIDS [J].
STELL, G .
JOURNAL OF STATISTICAL PHYSICS, 1995, 78 (1-2) :197-238
[19]  
Zinn-Justin J., 2021, Quantum Field Theory and Critical Phenomena, V5th