Preparation of silver nanoparticles by chemical reduction method

被引:427
作者
Wang, HS
Qiao, XL [1 ]
Chen, JG
Ding, SY
机构
[1] Huazhong Univ Sci & Technol, State Key Lab Plast Forming Simulat & Die & Mould, Wuhan 430074, Peoples R China
[2] Hubei Xinyin Noble Metal Co Ltd, Shiyan, Hubei, Peoples R China
关键词
silver; nanoparticles; agglomeration;
D O I
10.1016/j.colsurfa.2004.12.058
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In the solution containing polyvinyl pyrrolidone (PVP), silver nitrate was reduced by the glucose, and silver particles were generated. The possible reaction process is discussed in this paper. Sodium hydroxide was used to enhance the reaction velocity. When the mole ratio of NaOH to AgNO3 was ranged from 1.4 to 1.6, the colloid kept stable and no Ag+ was traced. The particles and colloids were also analyzed by the X-ray diffraction (XRD), transmission electron microscopy (TEM) and UV-visible (UV-vis) spectrophotometer. The TEM photo indicated that with the increase in PVP, the particles dispersed better; and if the weight ratio of PVP to AgNO3 is no less than 1.5, the particles dispersed individually in a colloid form. The agglomeration of particles also was influenced by the mixing speed of the reactants. The XRD spectrums showed that the particles were silver simple substance if the reductant was sufficient and the mixing speed of the reactants was slow enough. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:111 / 115
页数:5
相关论文
共 19 条
[1]   Self-assembly of a two-dimensional superlattice of molecularly linked metal clusters [J].
Andres, RP ;
Bielefeld, JD ;
Henderson, JI ;
Janes, DB ;
Kolagunta, VR ;
Kubiak, CP ;
Mahoney, WJ ;
Osifchin, RG .
SCIENCE, 1996, 273 (5282) :1690-1693
[2]   THE QUANTUM-MECHANICS OF LARGER SEMICONDUCTOR CLUSTERS (QUANTUM DOTS) [J].
BAWENDI, MG ;
STEIGERWALD, ML ;
BRUS, LE .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 1990, 41 :477-496
[3]   Synthesis of nanosized silver particles by chemical reduction method [J].
Chou, KS ;
Ren, CY .
MATERIALS CHEMISTRY AND PHYSICS, 2000, 64 (03) :241-246
[4]  
CHRISTOPHE P, 1993, PHYS CHEM, V97, P12974
[5]   THE PHYSICS OF SIMPLE METAL-CLUSTERS - EXPERIMENTAL ASPECTS AND SIMPLE-MODELS [J].
DEHEER, WA .
REVIEWS OF MODERN PHYSICS, 1993, 65 (03) :611-676
[6]   PHOTOCHEMISTRY OF SEMICONDUCTOR COLLOIDS .36. FLUORESCENCE INVESTIGATIONS ON THE NATURE OF ELECTRON AND HOLE TRAPS IN Q-SIZED COLLOIDAL CDS PARTICLES [J].
EYCHMULLER, A ;
HASSELBARTH, A ;
KATSIKAS, L ;
WELLER, H .
BERICHTE DER BUNSEN-GESELLSCHAFT-PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 1991, 95 (01) :79-84
[7]   GOLD NANOPARTICLES ION-IMPLANTED IN GLASS WITH ENHANCED NONLINEAR-OPTICAL PROPERTIES [J].
FUKUMI, K ;
CHAYAHARA, A ;
KADONO, K ;
SAKAGUCHI, T ;
HORINO, Y ;
MIYA, M ;
FUJII, K ;
HAYAKAWA, J ;
SATOU, M .
JOURNAL OF APPLIED PHYSICS, 1994, 75 (06) :3075-3080
[8]  
HENGLEIN A, 1988, TOP CURR CHEM, V143, P113
[9]   QUANTUM-SIZE EFFECTS OF INTERACTING ELECTRONS AND HOLES IN SEMICONDUCTOR MICROCRYSTALS WITH SPHERICAL SHAPE [J].
KAYANUMA, Y .
PHYSICAL REVIEW B, 1988, 38 (14) :9797-9805
[10]  
KERKER M, 1980, APPL OPTICS, V19, P4159, DOI [10.1364/AO.19.004159, 10.1364/AO.19.003373]