Components of the Legionella pneumophila flagellar regulon contribute to multiple virulence traits, including lysosome avoidance and macrophage death

被引:86
作者
Molofsky, AB [1 ]
Shetron-Rama, LM [1 ]
Swanson, MS [1 ]
机构
[1] Univ Michigan, Sch Med, Dept Microbiol & Immunol, Ann Arbor, MI 48109 USA
关键词
D O I
10.1128/IAI.73.9.5720-5734.2005
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Legionella pneumophila is a motile intracellular pathogen of macrophages and amoebae. When nutrients become scarce, the bacterium induces expression of transmission traits, some of which are dependent on the flagellar sigma factor FliA (sigma(28)). To test how particular components of the L. pneumophila flagellar regulon contribute to virulence, we compared a fliA mutant with strains whose flagellar construction is disrupted at various stages. We find that L. pneumophila requires FRA to avoid lysosomal degradation in marine bone marrow-derived macrophages (BMM), to regulate production of a melanin-like pigment, and to regulate binding to the dye crystal violet, whereas motility, flagellar secretion, and external flagella or flagellin are dispensable for these activities. Thus, in addition to flagellar genes, the FliA sigma factor regulates an effector(s) or regulator(s) that contributes to other transmissive traits, notably inhibition of phagosome maturation. Whether or not the microbes produced flagellin, all nonmotile L. pneumophila mutants bound BMM less efficiently than the wild type, resulting in poor infectivity and a loss of contact-dependent death of BMM. Therefore, bacterial motility increases contact with host cells during infection, but flagellin is not an adhesin. When BMM contact by each nonmotile strain was promoted by centrifugation, all the mutants bound BMM similarly, but only those microbes that synthesized flagellin induced BMM death. Thus, the flagellar regulon equips the aquatic pathogen L. pneumophila to coordinate motility with multiple traits vital to virulence.
引用
收藏
页码:5720 / 5734
页数:15
相关论文
共 103 条
[1]   Pseudomonas aeruginosa flagella activate airway epithelial cells through asialoGM1 and toll-like receptor 2 as well as toll-like receptor 5 [J].
Adamo, R ;
Sokol, S ;
Soong, G ;
Gomez, MI ;
Prince, A .
AMERICAN JOURNAL OF RESPIRATORY CELL AND MOLECULAR BIOLOGY, 2004, 30 (05) :627-634
[2]   Regulation of flagellar assembly [J].
Aldridge, P ;
Hughes, KT .
CURRENT OPINION IN MICROBIOLOGY, 2002, 5 (02) :160-165
[3]   The role of flagella, but not fimbriae, in the adherence of Salmonella enterica serotype Enteritidis to chick gut explant [J].
Allen-Vercoe, E ;
Woodward, MJ .
JOURNAL OF MEDICAL MICROBIOLOGY, 1999, 48 (08) :771-780
[4]   Temporal pore formation-mediated egress from macrophages and alveolar epithelial cells by Legionella pneumophila [J].
Alli, OAT ;
Gao, LY ;
Pedersen, LL ;
Zink, S ;
Radulic, M ;
Doric, M ;
Abu Kwaik, Y .
INFECTION AND IMMUNITY, 2000, 68 (11) :6431-6440
[5]   SPECIFIC-INHIBITION OF THE NA+-DRIVEN FLAGELLAR MOTORS OF ALKALOPHILIC BACILLUS STRAINS BY THE AMILORIDE ANALOG PHENAMIL [J].
ATSUMI, T ;
SUGIYAMA, S ;
CRAGOE, EJ ;
IMAE, Y .
JOURNAL OF BACTERIOLOGY, 1990, 172 (03) :1634-1639
[6]   The LetE protein enhances expression of multiple LetA/LetS-dependent transmission traits by Legionella pneumophila [J].
Bachman, MA ;
Swanson, MS .
INFECTION AND IMMUNITY, 2004, 72 (06) :3284-3293
[7]   Genetic evidence that Legionella pneumophila RpoS modulates expression of the transmission phenotype in both the exponential phase and the stationary phase [J].
Bachman, MA ;
Swanson, MS .
INFECTION AND IMMUNITY, 2004, 72 (05) :2468-2476
[8]   RpoS co-operates with other factors to induce Legionella pneumophila virulence in the stationary phase [J].
Bachman, MA ;
Swanson, MS .
MOLECULAR MICROBIOLOGY, 2001, 40 (05) :1201-1214
[9]   IcmS-dependent translocation of SdeA into macrophages by the Legionella pneumophila type IV secretion system [J].
Bardill, JP ;
Miller, JL ;
Vogel, JP .
MOLECULAR MICROBIOLOGY, 2005, 56 (01) :90-103
[10]   ALTERED INTRACELLULAR TARGETING PROPERTIES ASSOCIATED WITH MUTATIONS IN THE LEGIONELLA-PNEUMOPHILA DOTA GENE [J].
BERGER, KH ;
MERRIAM, JJ ;
ISBERG, RR .
MOLECULAR MICROBIOLOGY, 1994, 14 (04) :809-822