Noncommutative topological theories of gravity -: art. no. 045010

被引:48
作者
García-Compeán, H
Obregón, O
Ramírez, C
Sabido, M
机构
[1] Inst Politecn Nacl, Ctr Invest & Estudios Avanzados, Dept Fis, Mexico City 07000, DF, Mexico
[2] Univ Cambridge, DAMTP, Cambridge CB3 0WA, England
[3] Univ Guanajuato, Inst Fis, Leon Gto 37150, Spain
[4] Univ Autonoma Puebla, Fac Ciencias Fis Matemat, Puebla 72000, Mexico
关键词
D O I
10.1103/PhysRevD.68.045010
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The possibility of noncommutative topological gravity arising in the same manner as Yang-Mills theory is explored. We use the Seiberg-Witten map to construct such a theory based on a SL(2,C) complex connection, from which the Euler characteristic and the signature invariant are obtained. Finally, we speculate on the description of noncommutative gravitational instantons, as well as noncommutative local gravitational anomalies.
引用
收藏
页数:9
相关论文
共 62 条
[1]   GRAVITATIONAL ANOMALIES [J].
ALVAREZGAUME, L ;
WITTEN, E .
NUCLEAR PHYSICS B, 1984, 234 (02) :269-330
[2]   Gravity on noncommutative D-branes [J].
Ardalan, F ;
Arfaei, H ;
Garousi, MR ;
Ghodsi, A .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2003, 18 (07) :1051-1066
[3]   Axial anomaly in noncommutative QED on R4 [J].
Ardalan, F ;
Sadooghi, N .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2001, 16 (18) :3151-3177
[4]   THE CP PROBLEM IN QUANTUM-GRAVITY [J].
ASHTEKAR, A ;
BALACHANDRAN, AP ;
JO, S .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1989, 4 (06) :1493-1514
[5]   Chern-Simons formulation of noncommutative gravity in three dimensions -: art. no. 084012 [J].
Bañados, M ;
Chandía, O ;
Grandi, N ;
Schaposnik, FA ;
Silva, GA .
PHYSICAL REVIEW D, 2001, 64 (08) :840121-840128
[6]   Noncommutative gravity in two dimensions [J].
Cacciatori, S ;
Chamseddine, AH ;
Klemm, D ;
Martucci, L ;
Sabra, WA ;
Zanon, D .
CLASSICAL AND QUANTUM GRAVITY, 2002, 19 (15) :4029-4042
[7]   Noncommutative Einstein-AdS gravity in three dimensions [J].
Cacciatori, S ;
Klemm, D ;
Martucci, L ;
Zanon, D .
PHYSICS LETTERS B, 2002, 536 (1-2) :101-106
[8]   The standard model on non-commutative space-time [J].
Calmet, X ;
Jurco, B ;
Schupp, P ;
Wess, J ;
Wohlgenannt, M .
EUROPEAN PHYSICAL JOURNAL C, 2002, 23 (02) :363-376
[9]   Noncommutative deformation of four-dimensional Einstein gravity [J].
Cardella, MA ;
Zanon, D .
CLASSICAL AND QUANTUM GRAVITY, 2003, 20 (08) :L95-L103
[10]   Universal formula for noncommutative geometry actions: Unification of gravity and the standard model [J].
Chamseddine, AH ;
Connes, A .
PHYSICAL REVIEW LETTERS, 1996, 77 (24) :4868-4871