Localization of the Rab3 small G protein regulators in nerve terminals and their involvement in Ca2+-dependent exocytosis

被引:53
作者
Oishi, H
Sasaki, T
Nagano, F
Ikeda, W
Ohya, T
Wada, M
Ide, N
Nakanishi, H
Takai, Y
机构
[1] Osaka Univ, Sch Med, Dept Mol Biol & Biochem, Suita, Osaka 5650871, Japan
[2] JCR Pharmaceut Co Ltd, Japan Sci & Technol Corp, ERATO, Tokai Biotimer Project,Nishi Ku, Kobe, Hyogo 6512241, Japan
关键词
D O I
10.1074/jbc.273.51.34580
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Rab3 small G protein subfamily (Rab3) consists of four members, Rab3A, -B, -C, and -D. We have recently isolated and characterized the Rab3 regulators, GDP/GTP exchange protein (GEP) and GTPase activating protein (GAP), both of which are specific for the Rab3 subfamily. Rab3 GEP stimulates the conversion of the GDP-bound inactive form to the GTP-bound active form, whereas Rab3 GAP stimulates the reverse reaction. Of the four members of the Rab3 subfamily, evidence is accumulating that Rab3A is involved in Ca2+-dependent exocytosis, particularly in neurotransmitter release. We first analyzed the subcellular localization of Rab3 GEP and GAP in rat brain. Subcellular fractionation analysis showed that both Rab3 GEP and GAP were enriched in the synaptic soluble fraction. Immunocytochemical analysis in primary cultured rat hippocampal neurons showed that both Rab3 GEP and GAP were concentrated at the presynaptic nerve terminals. We then examined whether Rab3 GEP and GAP were involved in Ca2+-dependent exocytosis by use of human growth hormone (GH) co-expression assay system of cultured PC12 cells. Overexpression of the deletion mutant of Rab3 GEP possessing the catalytic activity reduced the high K+-induced GH release without affecting the basal GH release, whereas that of the deletion mutant lacking the catalytic activity showed no effect on the high K+-induced GN release. In contrast, overexpression of Rab3 GAP or its deletion mutant possessing the catalytic activity did not affect the high K+-induced GH release or the basal GH release. These results indicate that Rab3 GEP and GAP are colocalized with Rab3A at the synaptic release sites and suggest that they regulate the activity of Rab3A and are involved in Ca2+-dependent exocytosis.
引用
收藏
页码:34580 / 34585
页数:6
相关论文
共 37 条
[1]   GROWTH OF A RAT NEUROBLASTOMA CELL LINE IN SERUM-FREE SUPPLEMENTED MEDIUM [J].
BOTTENSTEIN, JE ;
SATO, GH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1979, 76 (01) :514-517
[2]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[3]  
BRONDYK WH, 1993, J BIOL CHEM, V268, P9410
[4]   Rabphilin-3A: A multifunctional regulator of synaptic vesicle traffic [J].
Burns, ME ;
Sasaki, T ;
Takai, Y ;
Augustine, GJ .
JOURNAL OF GENERAL PHYSIOLOGY, 1998, 111 (02) :243-255
[5]   Rab3A is essential for mossy fibre long-term potentiation in the hippocampus [J].
Castillo, PE ;
Janz, R ;
Sudhof, TC ;
Tzounopoulos, T ;
Malenka, RC ;
Nicoll, RA .
NATURE, 1997, 388 (6642) :590-593
[6]   EVIDENCE THAT THE RAB3A-BINDING PROTEIN, RABPHILIN3A, ENHANCES REGULATED SECRETION - STUDIES IN ADRENAL CHROMAFFIN CELLS [J].
CHUNG, SH ;
TAKAI, Y ;
HOLZ, RW .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (28) :16714-16718
[7]   Isolation and characterization of a GTPase activating protein specific for the Rab3 subfamily of small G proteins [J].
Fukui, K ;
Sasaki, T ;
Imazumi, K ;
Matsuura, Y ;
Nakanishi, H ;
Takai, Y .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (08) :4655-4658
[8]   THE ROLE OF RAB3A IN NEUROTRANSMITTER RELEASE [J].
GEPPERT, M ;
BOLSHAKOV, VY ;
SIEGELBAUM, SA ;
TAKEI, K ;
DECAMILLI, P ;
HAMMER, RE ;
SUDHOF, TC .
NATURE, 1994, 369 (6480) :493-497
[9]   The small GTP-binding protein Rab3A regulates a late step in synaptic vesicle fusion [J].
Geppert, M ;
Goda, Y ;
Stevens, CF ;
Sudhof, TC .
NATURE, 1997, 387 (6635) :810-814
[10]  
HOLZ RW, 1994, J BIOL CHEM, V269, P10229