Kermack and McKendrick revisited: The variable susceptibility model for infectious diseases

被引:43
作者
Inaba, H [1 ]
机构
[1] Univ Tokyo, Dept Math Sci, Meguro Ku, Tokyo 1538914, Japan
关键词
Kermack and McKendrick; epidemic model; endemic threshold; age-dependent population dynamics; variable susceptibility;
D O I
10.1007/BF03168575
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we reformulate Kermack's and McKendrick's variable susceptibility model for infectious diseases as a nonlinear age-dependent population dynamics model, then we prove an existence and uniqueness result for the endemic steady state. Subsequently we discuss the local stability of the endemic steady state. Finally we show that Pease's evolutionary epidemic model can be seen as a special case of the variable susceptibility model and discuss possible extensions.
引用
收藏
页码:273 / 292
页数:20
相关论文
共 20 条
[1]  
ANDERSON R M, 1991
[2]   THE KERMACK-MCKENDRICK EPIDEMIC THRESHOLD THEOREM - DISCUSSION [J].
ANDERSON, RM .
BULLETIN OF MATHEMATICAL BIOLOGY, 1991, 53 (1-2) :3-32
[3]  
Diekmann O., 1995, LEGACY KERMACK MCKEN, P95
[4]  
Diekmann O., 1976, Nonlinear Anal, V1, P459, DOI [10.1016/0362-546X(77)90011-6, DOI 10.1016/0362-546X(77)90011-6]
[5]  
GURTIN ME, 1974, ARCH RATION MECH AN, V54, P280
[6]  
Iannelli M., 1995, MATH THEORY AGE STRU
[7]  
Inaba H, 1998, INNOV APPL MATH, P213
[8]  
INABA H, 2001, IN PRESS IMA VOLUMES
[9]  
INABA H, 2000, KOKYUROKU, V1128, P112
[10]   CONTRIBUTIONS TO THE MATHEMATICAL-THEORY OF EPIDEMICS .2. THE PROBLEM OF ENDEMICITY (REPRINTED FROM PROCEEDINGS OF THE ROYAL SOCIETY, VOL 138A, PG 55-83, 1932) [J].
KERMACK, WO ;
MCKENDRICK, AG .
BULLETIN OF MATHEMATICAL BIOLOGY, 1991, 53 (1-2) :57-87