During rodent corticogenesis, a sizeable subpopulation of gamma-aminobutyric acid (GABA)ergic interneurons arises extracortically from the medial ganglionic eminence (MGE). These neurons progressively acquire responsiveness to GABA in the course of cortico-petal tangential migration, a process regulated by ambient GABA and mediated by GABA(A) receptors. Here, we combined patch clamp electrophysiology and single-cell reverse transcription--polymerase chain reaction to examine GABA(A) receptor expression in green fluorescent MGE-derived (eGFP+) cells in telencephalic slices from gestational day 14.5 BAC-Lhx6 embryos. GABA concentration-response curves revealed lower apparent affinity and efficacy in eGFP+ cells in and around the MGE than their counterparts in the cortex. Pharmacological tests revealed subunit-selective response profiles in the MGE and cortex consistent with differential expression of GABA(A) receptor isoforms. Profiling of GABA(A) receptor subunit transcripts (alpha 1-5, beta 1-3, and gamma 1-3, delta) uncovered increased expression of the alpha 1-, alpha 2-, alpha 5-, gamma 2-, and gamma 3-subunit messenger RNAs in the cortex. We propose that the dynamic expression of certain GABA(A) receptor subunits contributes to assembling receptor isoforms that confer functional attributes important in regulating the migration and maturation of primordial GABAergic cortical interneurons.