Neuroleptic-induced catalepsy: Electrophysiological mechanisms of functional recovery induced by high-frequency stimulation of the subthalamic nucleus

被引:90
作者
Degos, B
Deniau, JM
Thierry, AM
Glowinski, J
Pezard, L
Maurice, N
机构
[1] Coll France, INSERM, Unite 667, F-75231 Paris, France
[2] Coll France, Unite 114, Chaire Neuropharmacol, F-75231 Paris, France
[3] Hop La Pitie Salpetriere, CNRS, UPR 640, Lab Neurosci Cognit & Imagerie Cerebrale, F-75651 Paris, France
关键词
substantia nigra pars reticulata; basal ganglia; deep brain stimulation; Parkinson's disease; neuronal activity; dopaminergic transmission;
D O I
10.1523/JNEUROSCI.1056-05.2005
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
High-frequency stimulation (HFS) of the subthalamic nucleus (STN) remarkably alleviates motor disorders in parkinsonian patients. The mechanisms by which STN HFS exerts its beneficial effects were investigated in anesthetized rats, using a model of acute interruption of dopaminergic transmission. Combined systemic injections of SCH-23390 [R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5,tetrahydro-1H-3-benzazepine] and raclopride, antagonists of the D-1 and D-2 classes of dopaminergic receptors, respectively, were performed, and the parameters of STN HFS that reversed the neuroleptic-induced catalepsy were determined in freely moving animals. The effects of neuroleptics and the impact of STN HFS applied at parameters alleviating neuroleptic-induced catalepsy were analyzed in the substantia nigra pars reticulata (SNR), a major basal ganglia output structure, by recording the neuronal firing pattern and the responses evoked by cortical stimulation. Neuroleptic injection altered the tonic and regular mode of discharge of SNR neurons, most of them becoming irregular with bursts of spikes and pauses. The inhibitory component of the cortically evoked response, which is attributable to the activation of the direct striatonigral circuit, was decreased, whereas the late excitatory response resulting from the indirect striato-pallido-subthalamo-nigral circuit was reinforced. During STN HFS, the spontaneous firing of SNR cells was either increased or decreased with a global enhancement of the firing rate in the overall population of SNR cells recorded. However, in all of the cases, SNR firing pattern was regularized, and the bias between the trans-striatal and trans-subthalamic circuits was reversed. By these effects, STN HFS restores the functional properties of the circuits by which basal ganglia contribute to motor activity.
引用
收藏
页码:7687 / 7696
页数:10
相关论文
共 52 条
[1]   Anatomical and physiological evidence for D1 and D2 dopamine receptor colocalization in neostriatal neurons [J].
Aizman, O ;
Brismar, H ;
Uhlén, P ;
Zettergren, E ;
Levey, AI ;
Forssberg, H ;
Greengard, P ;
Aperia, A .
NATURE NEUROSCIENCE, 2000, 3 (03) :226-230
[2]   THE FUNCTIONAL-ANATOMY OF BASAL GANGLIA DISORDERS [J].
ALBIN, RL ;
YOUNG, AB ;
PENNEY, JB .
TRENDS IN NEUROSCIENCES, 1989, 12 (10) :366-375
[3]   Complex locking rather than complete cessation of neuronal activity in the globus pallidus of a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated primate in response to pallidal microstimulation [J].
Bar-Gad, I ;
Elias, S ;
Vaadia, E ;
Bergman, H .
JOURNAL OF NEUROSCIENCE, 2004, 24 (33) :7410-7419
[4]   Mechanisms of deep brain stimulation [J].
Benabid, AL ;
Benazzous, A ;
Pollak, P .
MOVEMENT DISORDERS, 2002, 17 :S73-S74
[5]   REVERSAL OF RIGIDITY AND IMPROVEMENT IN MOTOR-PERFORMANCE BY SUBTHALAMIC HIGH-FREQUENCY STIMULATION IN MPTP-TREATED MONKEYS [J].
BENAZZOUZ, A ;
GROSS, C ;
FEGER, J ;
BORAUD, T ;
BIOULAC, B .
EUROPEAN JOURNAL OF NEUROSCIENCE, 1993, 5 (04) :382-389
[6]   High-frequency stimulation produces a transient blockade of voltage-gated currents in subthalamic neurons [J].
Beurrier, C ;
Bioulac, B ;
Audin, J ;
Hammond, C .
JOURNAL OF NEUROPHYSIOLOGY, 2001, 85 (04) :1351-1356
[7]   From single extracellular unit recording in experimental and human Parkinsonism to the development of a functional concept of the role played by the basal ganglia in motor control [J].
Boraud, T ;
Bezard, E ;
Bioulac, B ;
Gross, CE .
PROGRESS IN NEUROBIOLOGY, 2002, 66 (04) :265-283
[8]   Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson's disease [J].
Brown, P ;
Oliviero, A ;
Mazzone, P ;
Insola, A ;
Tonali, P ;
Di Lazzaro, V .
JOURNAL OF NEUROSCIENCE, 2001, 21 (03) :1033-1038
[9]  
BUNNEY BS, 1973, J PHARMACOL EXP THER, V185, P560
[10]  
Chesselet MF, 1996, TRENDS NEUROSCI, V19, P417