Ultrafast synthesis of highly luminescent green- to near infrared-emitting CdTe nanocrystals in aqueous phase

被引:204
作者
Zou, Lei [1 ]
Gu, Zhenyu [1 ]
Zhang, Nan [1 ]
Zhang, Yuliang [1 ]
Fang, Zheng [1 ]
Zhu, Weihong [1 ]
Zhong, Xinhua [1 ]
机构
[1] E China Univ Sci & Technol, Dept Chem, Adv Mat Lab, Shanghai 200237, Peoples R China
关键词
D O I
10.1039/b801418c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
It is commonly observed that the "traditional'' aqueous solution route to prepare CdTe nanocrystals (NCs) using thiol ligands as capping reagents is usually very time-consuming and the luminescent properties are poor in the deep red to near infrared (NIR) emission window. Herein, we present an ultrafast and facile aqueous phase route under atmospheric pressure to prepare high-quality green-to NIR-emitting CdTe NCs with mercaptopropionic acid as capping reagent. In contrast to previous reports, red-to NIR-emitting CdTe NCs with emission efficiency up to 50% can be obtained within 1 h reflux time under the optimized experimental conditions. The growth rate is about 100 times faster than those reported previously. The influences of various experimental variables, including Te-to-Cd ratio, ligand-to-Cd ratio, pH value as well as the precursor concentration, on the growth rate and luminescent properties of the obtained CdTe NCs have been systematically investigated. Experimental results indicate that the combination of high pH value and low Te-to-Cd molar ratio plays a crucial role in determining the fast growth rate and the high-quality optical properties of the obtained CdTe NCs. The mechanism for the fast growth rate and the resulting high-quality optical properties is also elucidated.
引用
收藏
页码:2807 / 2815
页数:9
相关论文
共 61 条
[1]   Enhancement effect of illumination on the photoluminescence of water-soluble CdTe nanocrystals: Toward highly fluorescent CdTe/CdS core-shell structure [J].
Bao, HB ;
Gong, YJ ;
Li, Z ;
Gao, MY .
CHEMISTRY OF MATERIALS, 2004, 16 (20) :3853-3859
[2]   Relations between the photoluminescence efficiency of CdTe nanocrystals and their surface properties revealed by synchrotron XPS [J].
Borchert, H ;
Talapin, DV ;
Gaponik, N ;
McGinley, C ;
Adam, S ;
Lobo, A ;
Möller, T ;
Weller, H .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (36) :9662-9668
[3]   Semiconductor nanocrystals as fluorescent biological labels [J].
Bruchez, M ;
Moronne, M ;
Gin, P ;
Weiss, S ;
Alivisatos, AP .
SCIENCE, 1998, 281 (5385) :2013-2016
[4]   Quantum dot bioconjugates for ultrasensitive nonisotopic detection [J].
Chan, WCW ;
Nie, SM .
SCIENCE, 1998, 281 (5385) :2016-2018
[5]   Single-step synthesis to control the photoluminescence quantum yield and size dispersion of CdSe nanocrystals [J].
Donegá, CD ;
Hickey, SG ;
Wuister, SF ;
Vanmaekelbergh, D ;
Meijerink, A .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (02) :489-496
[6]   A versatile strategy for quantum dot ligand exchange [J].
Dubois, Fabien ;
Mahler, Benoit ;
Dubertret, Benoit ;
Doris, Eric ;
Mioskowski, Charles .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (03) :482-483
[7]   Strongly photoluminescent CdTe nanocrystals by proper surface modification [J].
Gao, MY ;
Kirstein, S ;
Möhwald, H ;
Rogach, AL ;
Kornowski, A ;
Eychmüller, A ;
Weller, H .
JOURNAL OF PHYSICAL CHEMISTRY B, 1998, 102 (43) :8360-8363
[8]   Thiol-capping of CdTe nanocrystals:: An alternative to organometallic synthetic routes [J].
Gaponik, N ;
Talapin, DV ;
Rogach, AL ;
Hoppe, K ;
Shevchenko, EV ;
Kornowski, A ;
Eychmüller, A ;
Weller, H .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (29) :7177-7185
[9]   One-pot synthesis of highly luminescent CdTe/CdS core/shell nanocrystals in aqueous phase [J].
Gu, Zhenyu ;
Zou, Lei ;
Fang, Zheng ;
Zhu, Weihong ;
Zhong, Xinhua .
NANOTECHNOLOGY, 2008, 19 (13)
[10]   Systematic study of the photoluminescence dependence of thiol-capped CdTe nanocrystals on the reaction conditions [J].
Guo, J ;
Yang, WL ;
Wang, CC .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (37) :17467-17473