A mechanism of COOH-terminal binding protein-mediated repression

被引:15
作者
Meloni, AR
Lai, CH
Yao, TP
Nevins, JR
机构
[1] Duke Univ, Med Ctr, Dept Mol Genet & Microbiol, Durham, NC 27710 USA
[2] Duke Univ, Med Ctr, Dept Pharmacol & Canc Biol, Durham, NC 27710 USA
[3] Duke Univ, Med Ctr, Duke Inst Genome Sci & Policy, Durham, NC 27710 USA
关键词
D O I
10.1158/1541-7786.MCR-05-0088
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
The E2F4 and E2F5 proteins specifically associate with the Rb-related p130 protein in quiescent cells to repress transcription of various genes encoding proteins important for cell growth. A series of reports has provided evidence that Rb-mediated repression involves both histone deacetylase (HDAC)-dependent and HDAC-independent events. Our previous results suggest that one such mechanism for Rb-mediated repression, independent of recruitment of HDAC, involves the recruitment of the COOH-terminal binding protein (CtBP) corepressor, a protein now recognized to play a widespread role in transcriptional repression. We now find that CtBP can interact with the histone acetyltransferase, cyclic AMP-responsive element-binding protein (CREB) binding protein, and inhibit its ability to acetylate histone. This inhibition is dependent on a NH2-terminal region of CtBP that is also required for transcription repression. These results thus suggest two complementary mechanisms for E2F/p130-mediated repression that have in common the control of histone acetylation at target promoters.
引用
收藏
页码:575 / 583
页数:9
相关论文
共 67 条
[1]   Nicotinamide adenine dinucleotide stimulates oligomerization, interaction with adenovirus E1A and an intrinsic dehydrogenase activity of CtBP [J].
Balasubramanian, P ;
Zhao, LJ ;
Chinnadurai, G .
FEBS LETTERS, 2003, 537 (1-3) :157-160
[2]   The Protein Information Resource (PIR) [J].
Barker, WC ;
Garavelli, JS ;
Huang, HZ ;
McGarvey, PB ;
Orcutt, BC ;
Srinivasarao, GY ;
Xiao, CL ;
Yeh, LSL ;
Ledley, RS ;
Janda, JF ;
Pfeiffer, F ;
Mewes, HW ;
Tsugita, A ;
Wu, C .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :41-44
[3]   The PIR-International Protein Sequence Database [J].
Barker, WC ;
Garavelli, JS ;
McGarvey, PB ;
Marzec, CR ;
Orcutt, BC ;
Srinivasarao, GY ;
Yeh, LSL ;
Ledley, RS ;
Mewes, HW ;
Pfeiffer, F ;
Tsugita, A ;
Wu, C .
NUCLEIC ACIDS RESEARCH, 1999, 27 (01) :39-43
[4]   A REGION IN THE C-TERMINUS OF ADENOVIRUS-2/5 E1A PROTEIN IS REQUIRED FOR ASSOCIATION WITH A CELLULAR PHOSPHOPROTEIN AND IMPORTANT FOR THE NEGATIVE MODULATION OF T24-RAS MEDIATED TRANSFORMATION, TUMORIGENESIS AND METASTASIS [J].
BOYD, JM ;
SUBRAMANIAN, T ;
SCHAEPER, U ;
LAREGINA, M ;
BAYLEY, S ;
CHINNADURAI, G .
EMBO JOURNAL, 1993, 12 (02) :469-478
[5]   Retinoblastoma protein recruits histone deacetylase to repress transcription [J].
Brehm, A ;
Miska, EA ;
McCance, DJ ;
Reid, JL ;
Bannister, AJ ;
Kouzarides, T .
NATURE, 1998, 391 (6667) :597-601
[6]   A viral mechanism for inhibition of p300 and PCAF acetyltransferase activity [J].
Chakravarti, D ;
Ogryzko, V ;
Kao, HY ;
Nash, A ;
Chen, HW ;
Nakatani, Y ;
Evans, RM .
CELL, 1999, 96 (03) :393-403
[7]   Establishment of irreversible growth arrest in myogenic differentiation requires the RB LXCXE-binding function [J].
Chen, TT ;
Wang, JYJ .
MOLECULAR AND CELLULAR BIOLOGY, 2000, 20 (15) :5571-5580
[8]   CtBP, an unconventional transcriptional corepressor in development and oncogenesis [J].
Chinnadurai, G .
MOLECULAR CELL, 2002, 9 (02) :213-224
[9]   NPS@:: Network Protein Sequence Analysis [J].
Combet, C ;
Blanchet, C ;
Geourjon, C ;
Deléage, G .
TRENDS IN BIOCHEMICAL SCIENCES, 2000, 25 (03) :147-150
[10]   Net, a negative Ras-switchable TCF, contains a second inhibition domain, the CID, that mediates repression through interactions with CtBP and de-acetylation [J].
Criqui-Filipe, P ;
Ducret, C ;
Maira, SM ;
Wasylyk, B .
EMBO JOURNAL, 1999, 18 (12) :3392-3403