A bounded-error approach to piecewise affine system identification

被引:252
作者
Bemporad, A [1 ]
Garulli, A
Paoletti, S
Vicino, A
机构
[1] Univ Siena, Dipartimento Ingn Informaz, I-53100 Siena, Italy
[2] Univ Siena, Ctr Studio Sistemi Complessi, I-53100 Siena, Italy
关键词
bounded error; MIN PFS problem; nonlinear identification; piecewise affine autoregressive exogenous models;
D O I
10.1109/TAC.2005.856667
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a three-stage procedure for parametric identification of piecewise affine autoregressive exogenous (PWARX) models. The first stage simultaneously classifies the data points and estimates the number of submodels and the corresponding parameters by solving the partition into a minimum number of feasible subsystems (MIN PIPS) problem for a suitable set of linear complementary inequalities derived from data. Second, a refinement procedure reduces misclassifications and improves parameter estimates. The third stage determines a polyhedral partition of the regressor set via two-class or multiclass linear separation techniques. As a main feature, the algorithm imposes that the identification error is bounded by a quantity delta. Such a bound is a useful tuning parameter to trade off between quality of fit and model complexity. The performance of the proposed PWA system identification procedure is demonstrated via numerical examples and on experimental data from an electronic component placement process in a pick-and-place machine.
引用
收藏
页码:1567 / 1580
页数:14
相关论文
共 30 条
[1]   THE COMPLEXITY AND APPROXIMABILITY OF FINDING MAXIMUM FEASIBLE SUBSYSTEMS OF LINEAR RELATIONS [J].
AMALDI, E ;
KANN, V .
THEORETICAL COMPUTER SCIENCE, 1995, 147 (1-2) :181-210
[2]   The MIN PFS problem and piecewise linear model estimation [J].
Amaldi, E ;
Mattavelli, M .
DISCRETE APPLIED MATHEMATICS, 2002, 118 (1-2) :115-143
[3]  
AMALDI E, 2001, 200190 DEI
[4]  
Bemporad A, 2003, LECT NOTES COMPUT SC, V2623, P97
[5]   Observability and controllability of piecewise affine and hybrid systems [J].
Bemporad, A ;
Ferrari-Trecate, G ;
Morari, M .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2000, 45 (10) :1864-1876
[6]  
Bemporad A., 2003, P 13 IFAC S SYST ID, P1826, DOI [10.1016/s1474-6670(17)35019-x, DOI 10.1016/S1474-6670(17)35019-X]
[7]  
Bennett K. P., 1994, OPTIMIZATION METHODS, V3, P27, DOI DOI 10.1080/10556789408805554
[8]  
BENNETT KP, 1992, OPTIMIZATION METHODS, V1, P23, DOI DOI 10.1080/10556789208805504
[9]   Multicategory classification by support vector machines [J].
Bredensteiner, EJ ;
Bennett, KP .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 1999, 12 (1-3) :53-79
[10]   HINGING HYPERPLANES FOR REGRESSION, CLASSIFICATION, AND FUNCTION APPROXIMATION [J].
BREIMAN, L .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1993, 39 (03) :999-1013