The human SIRT3 protein deacetylase is exclusively mitochondrial

被引:107
作者
Cooper, Helen M.
Spelbrink, Johannes N. [1 ]
机构
[1] Inst Med Technol, Tampere, Finland
[2] Tampere Univ Hosp, Tampere, Finland
关键词
deacetylase; immunofluorescence; import; leptomycin B; mitochondrial; sirtuin;
D O I
10.1042/BJ20071624
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
It has recently been suggested that perhaps as many as 20% of all mitochondrial proteins are regulated through lysine acetylation while SIRT3 has been implicated as an important mitochondrial protein deacetylase. It is therefore of crucial importance that the mitochondrial localization of potential protein deacetylases is unambiguously established. Although mouse SIRT3 was recently shown to be mitochondrial, HsSIRT3 (human SIRT3) was reported to be both nuclear and mitochondrial and to relocate from the nucleus to the mitochondrion upon cellular stress. In the present study we show, using various HsSIRT3 expression constructs and a combination of immunofluorescence and careful subcellular fractionation, that in contrast with earlier reports HsSIRT3 is exclusively mitochondrial. We discuss possible experimental explanations for these discrepancies. In addition we suggest, on the basis of the analysis of public genome databases, that the full-length mouse SIRT3 protein is a 37 kDa mitochondrial precursor protein contrary to the previously suggested 29 kDa protein.
引用
收藏
页码:279 / 285
页数:7
相关论文
共 29 条
[1]   Regulation of insulin secretion by SIRT4, a mitochondrial ADP-ribosyltransferase [J].
Ahuja, Nidhi ;
Schwer, Bjoern ;
Carobbio, Stefania ;
Waltregny, David ;
North, Brian J. ;
Castronovo, Vincenzo ;
Maechler, Pierre ;
Verdin, Eric .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2007, 282 (46) :33583-33592
[2]   Cytoplasmic sequestration of HDAC7 from mitochondrial and nuclear compartments upon initiation of apoptosis [J].
Bakin, RE ;
Jung, MO .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (49) :51218-51225
[3]   ACCURATE TRANSCRIPTION INITIATION BY RNA POLYMERASE-II IN A SOLUBLE EXTRACT FROM ISOLATED MAMMALIAN NUCLEI [J].
DIGNAM, JD ;
LEBOVITZ, RM ;
ROEDER, RG .
NUCLEIC ACIDS RESEARCH, 1983, 11 (05) :1475-1489
[4]   Regulating the regulators: Lysine modifications make their mark [J].
Freiman, RN ;
Tjian, R .
CELL, 2003, 112 (01) :11-17
[5]   Composition and dynamics of human mitochondrial nucleoids [J].
Garrido, N ;
Griparic, L ;
Jokitalo, E ;
Wartiovaara, J ;
van der Bliek, AM ;
Spelbrink, JN .
MOLECULAR BIOLOGY OF THE CELL, 2003, 14 (04) :1583-1596
[6]   Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1α [J].
Gerhart-Hines, Zachary ;
Rodgers, Joseph T. ;
Bare, Olivia ;
Lerin, Carles ;
Kim, Seung-Hee ;
Mostoslavsky, Raul ;
Alt, Frederick W. ;
Wu, Zhidan ;
Puigserver, Pere .
EMBO JOURNAL, 2007, 26 (07) :1913-1923
[7]   Sirtuins as potential targets for metabolic syndrome [J].
Guarente, Leonard .
NATURE, 2006, 444 (7121) :868-874
[8]   Mammalian sirtuins - emerging roles in physiology, aging, and calorie restriction [J].
Haigis, Marcia C. ;
Guarente, Leonard P. .
GENES & DEVELOPMENT, 2006, 20 (21) :2913-2921
[9]   SIRT4 inhibits glutamate dehydrogehase and opposes the effects of calorie restriction in pancreatic β cells [J].
Haigis, Marcia C. ;
Mostoslavsky, Raul ;
Haigis, Kevin M. ;
Fahie, Kamau ;
Christodoulou, Danos C. ;
Murphy, Andrew J. ;
Valenzuela, David M. ;
Yancopoulos, George D. ;
Karow, Margaret ;
Blander, Gil ;
Wolberger, Cynthia ;
Prolla, Tomas A. ;
Weindruch, Richard ;
Alt, Frederick W. ;
Guarente, Leonard .
CELL, 2006, 126 (05) :941-954
[10]   Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases [J].
Hallows, William C. ;
Lee, Susan ;
Denu, John M. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (27) :10230-10235