The estimation of continuous parameter long-memory time series models

被引:33
作者
Chambers, MJ
机构
关键词
D O I
10.1017/S0266466600006642
中图分类号
F [经济];
学科分类号
02 ;
摘要
A class of univariate fractional ARIMA models with a continuous time parameter is developed for the purpose of modeling long-memory time series. The spectral density of discretely observed data is derived for both point observations (stock variables) and integral observations (flow variables). A frequency domain maximum likelihood method is proposed for estimating the long-memory parameter and is shown to be consistent and asymptotically normally distributed, and some issues associated with the computation of the spectral density are explored.
引用
收藏
页码:374 / 390
页数:17
相关论文
共 20 条
[1]  
BERGSTROM AR, 1984, HDB ECONOMETRICS, V0002, P01146
[2]  
BERGSTROM AR, 1988, ECONOMETRIC THEORY, V5, P365
[3]   EFFICIENT PARAMETER-ESTIMATION FOR SELF-SIMILAR PROCESSES [J].
DAHLHAUS, R .
ANNALS OF STATISTICS, 1989, 17 (04) :1749-1766
[4]   LARGE-SAMPLE PROPERTIES OF PARAMETER ESTIMATES FOR STRONGLY DEPENDENT STATIONARY GAUSSIAN TIME-SERIES [J].
FOX, R ;
TAQQU, MS .
ANNALS OF STATISTICS, 1986, 14 (02) :517-532
[5]  
GELFAND IM, 1964, GENERALIZED FUNCTION, V1
[6]  
Geweke J., 1983, J TIME SER ANAL, V4, P221, DOI DOI 10.1111/J.1467-9892.1983.TB00371.X
[7]   TYPICAL SPECTRAL SHAPE OF AN ECONOMIC VARIABLE [J].
GRANGER, CWJ .
ECONOMETRICA, 1966, 34 (01) :150-&
[8]   THE DIMENSIONALITY OF THE ALIASING PROBLEM IN MODELS WITH RATIONAL SPECTRAL DENSITIES [J].
HANSEN, LP ;
SARGENT, TJ .
ECONOMETRICA, 1983, 51 (02) :377-387
[9]  
HOSKING JRM, 1981, BIOMETRIKA, V68, P165, DOI 10.1093/biomet/68.1.165
[10]  
JOLLEY LBW, 1961, SUMMATION SERIES