Protein deacetylation by sirtuins: delineating a post-translational regulatory program responsive to nutrient and redox stressors

被引:55
作者
Bao, Jianjun [1 ]
Sack, Michael N. [1 ]
机构
[1] NHLBI, Translat Med Branch, NIH, Bethesda, MD 20892 USA
基金
美国国家卫生研究院;
关键词
Sirtuins; Lysine acetylation/deacetylation; Post-translational modifications; NAD(+); Biological functions; III HISTONE DEACETYLASE; NAD(+) SALVAGE PATHWAY; FATTY-ACID OXIDATION; SIR2; HOMOLOG; GENE-EXPRESSION; CALORIE RESTRICTION; NEGATIVE REGULATOR; MITOCHONDRIAL-FUNCTION; GLUCOSE-HOMEOSTASIS; DOWN-REGULATION;
D O I
10.1007/s00018-010-0402-y
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Lysine acetylation/deacetylation is increasingly being recognized as common post-translational modification that appears to be broadly operational throughout the cell. The functional roles of these modifications, outside of the nucleus, have not been extensively studied. Moreover, as acetyl-CoA donates the acetyl group for acetylation, nutrient availability and energetic status may be pivotal in this modification. Similarly, nutrient limitation is associated with the deacetylation reaction. This modification is orchestrated by a novel family of sirtuin deacetylases that function in a nutrient and redox dependent manner and targets non-histone protein deacetylation. In compartment-specific locations, candidate target proteins undergoing lysine-residue deacetylation are being identified. Through these investigations, the functional role of this post-translational modification is being delineated. We review the sirtuin family proteins, discuss their functional effects on target proteins, and postulate on potential biological programs and disease processes that may be modified by sirtuin-mediated deacetylation of target proteins.
引用
收藏
页码:3073 / 3087
页数:15
相关论文
共 176 条
[1]   Phosphorylation of HuR by Chk2 regulates SIRT1 expression [J].
Abdelmohsen, Kotb ;
Pullmann, Rudolf, Jr. ;
Lai, Ashish ;
Kim, Hyeon Ho ;
Galban, Stefanie ;
Yang, Xiaoling ;
Blethrow, Justin D. ;
Walker, Mark ;
Shubert, Jonathan ;
Gillespie, David A. ;
Furneaux, Henry ;
Gorospe, Myriam .
MOLECULAR CELL, 2007, 25 (04) :543-557
[2]   A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis [J].
Ahn, Bong-Hyun ;
Kim, Hyun-Seok ;
Song, Shiwei ;
Lee, In Hye ;
Liu, Jie ;
Vassilopoulos, Athanassios ;
Deng, Chu-Xia ;
Finkel, Toren .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (38) :14447-14452
[3]   Regulation of insulin secretion by SIRT4, a mitochondrial ADP-ribosyltransferase [J].
Ahuja, Nidhi ;
Schwer, Bjoern ;
Carobbio, Stefania ;
Waltregny, David ;
North, Brian J. ;
Castronovo, Vincenzo ;
Maechler, Pierre ;
Verdin, Eric .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2007, 282 (46) :33583-33592
[4]   Sirt1 regulates aging and resistance to oxidative stress in the heart [J].
Alcendor, Ralph R. ;
Gao, Shumin ;
Zhai, Peiyong ;
Zablocki, Daniela ;
Holle, Eric ;
Yu, Xianzhong ;
Tian, Bin ;
Wagner, Thomas ;
Vatner, Stephen F. ;
Sadoshima, Junichi .
CIRCULATION RESEARCH, 2007, 100 (10) :1512-1521
[5]   Silent information regulator 2α, a longevity factor and class III histone deacetylase, is an essential endogenous apoptosis inhibitor in cardiac myocytes [J].
Alcendor, RR ;
Kirshenbaum, LA ;
Imai, S ;
Vatner, SF ;
Sadoshima, J .
CIRCULATION RESEARCH, 2004, 95 (10) :971-980
[6]   SIRT3 is pro-apoptotic and participates in distinct basal apoptotic pathways [J].
Allison, Simon J. ;
Milner, Jo .
CELL CYCLE, 2007, 6 (21) :2669-2677
[7]   Manipulation of a nuclear NAD+ salvage pathway delays aging without altering steady-state NAD+ levels [J].
Anderson, RM ;
Bitterman, KJ ;
Wood, JG ;
Medvedik, O ;
Cohen, H ;
Lin, SS ;
Manchester, JK ;
Gordon, JI ;
Sinclair, DA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (21) :18881-18890
[8]   SIRT1 regulates circadian clock gene expression through PER2 deacetylation [J].
Asher, Gad ;
Gatfield, David ;
Stratmann, Markus ;
Reinke, Hans ;
Dibner, Charna ;
Kreppel, Florian ;
Mostoslavsky, Raul ;
Alt, Frederick W. ;
Schibler, Ueli .
CELL, 2008, 134 (02) :317-328
[9]   Altered sirtuin expression is associated with node-positive breast cancer [J].
Ashraf, N. ;
Zino, S. ;
MacIntyre, A. ;
Kingsmore, D. ;
Payne, A. P. ;
George, W. D. ;
Shiels, P. G. .
BRITISH JOURNAL OF CANCER, 2006, 95 (08) :1056-1061
[10]   Human histone deacetylase SIRT2 interacts with the homeobox transcription factor HOXA10 [J].
Bae, NS ;
Swanson, MJ ;
Vassilev, A ;
Howard, BH .
JOURNAL OF BIOCHEMISTRY, 2004, 135 (06) :695-700