The effect of alkalinity and temperature on the performance of lithium-air fuel cell with hybrid electrolytes

被引:61
作者
He, Ping [1 ]
Wang, Yonggang [1 ]
Zhou, Haoshen [1 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, Energy Technol Res Inst, Tsukuba, Ibaraki 3058568, Japan
关键词
Lithium-air fuel cell; Lithium super ionic conductor glass; Electrochemical performance; Galvanistatic measurement; Electrochemical impedance spectra; BATTERY; O-2;
D O I
10.1016/j.jpowsour.2011.02.071
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A lithium-air fuel cell combined an air cathode in aqueous electrolyte with a metallic lithium anode in organic electrolyte can continuously reduce O(2) to provide capacity. Herein, the performance of this hybrid electrolyte based lithium-air fuel cell under the mixed control of alkalinity and temperature have been investigated by means of galvanistatic measurement and the analysis of electrochemical impedance spectra. Electromotive force and inner resistance of the cell decrease with the increase of LiOH concentration in aqueous electrolyte. The values ranged from 0.5 to 1.0 M could be the suitable parameters for the LiOH concentration of aqueous electrolyte. Environment temperature exhibited a significant influence on the performance of lithium-air fuel cell. The lithium-air fuel cell can provide a larger power at elevated temperature due to the decrease of all resistance of elements. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:5611 / 5616
页数:6
相关论文
共 15 条
[1]   A polymer electrolyte-based rechargeable lithium/oxygen battery [J].
Abraham, KM ;
Jiang, Z .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (01) :1-5
[2]   Combination of Lightweight Elements and Nanostructured Materials for Batteries [J].
Chen, Jun ;
Cheng, Fangyi .
ACCOUNTS OF CHEMICAL RESEARCH, 2009, 42 (06) :713-723
[3]   α-MnO2 nanowires:: A catalyst for the O2 electrode in rechargeable lithium batteries [J].
Debart, Aurelie ;
Paterson, Allan J. ;
Bao, Jianli ;
Bruce, Peter G. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (24) :4521-4524
[4]   A Li-air fuel cell with recycle aqueous electrolyte for improved stability [J].
He, Ping ;
Wang, Yonggang ;
Zhou, Haoshen .
ELECTROCHEMISTRY COMMUNICATIONS, 2010, 12 (12) :1686-1689
[5]   Electrical properties of Li1.3Ge1.4Ti0.3Al0.3(PO4)3 superionic ceramics [J].
Kazakevicius, E. ;
Urcinskas, A. ;
Kezionis, A. ;
Dindune, A. ;
Kanepe, Z. ;
Ronis, J. .
ELECTROCHIMICA ACTA, 2006, 51 (27) :6199-6202
[6]   Metallic magnesium nano/mesoscale structures: Their shape-controlled preparation and Mg/air battery applications [J].
Li, Weiyang ;
Li, Chunsheng ;
Zhou, Chunyuan ;
Ma, Hua ;
Chen, Jun .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2006, 45 (36) :6009-6012
[7]   Rechargeable Li2O2 electrode for lithium batteries [J].
Ogasawara, T ;
Débart, A ;
Holzapfel, M ;
Novak, P ;
Bruce, PG .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (04) :1390-1393
[8]   Characterization of the lithium/oxygen organic electrolyte battery [J].
Read, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (09) :A1190-A1195
[9]   Discharge model for the lithium iron-phosphate electrode [J].
Srinivasan, V ;
Newman, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (10) :A1517-A1529
[10]  
Visco S. J., 12 INT M LITH BATT N