Tree networks with causal structure

被引:26
作者
Bialas, P
Burda, Z
Jurkiewicz, J
Krzywicki, A
机构
[1] Jagiellonian Univ, Inst Comp Sci, PL-30072 Krakow, Poland
[2] Jagiellonian Univ, M Smoluchowski Inst Phys, PL-30059 Krakow, Poland
[3] Univ Paris 11, Phys Theor Lab, F-91405 Orsay, France
关键词
D O I
10.1103/PhysRevE.67.066106
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A geometry of networks endowed with a causal structure is discussed using the conventional framework of the equilibrium statistical mechanics. The popular growing network models appear as particular causal models. We focus on a class of tree graphs, an analytically solvable case. General formulas are derived, describing the degree distribution, the ancestor-descendant correlation, and the probability that a randomly chosen node lives at a given geodesic distance from the root. It is shown that the Hausdorff dimension d(H) of the causal networks is generically infinite, in contrast to the maximally random trees where it is generically finite.
引用
收藏
页码:8 / 066106
页数:8
相关论文
共 36 条
[1]   Statistical mechanics of complex networks [J].
Albert, R ;
Barabási, AL .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :47-97
[2]   SUMMING OVER ALL GENERA FOR D-GREATER-THAN-1 - A TOY MODEL [J].
AMBJORN, J ;
DURHUUS, B ;
JONSSON, T .
PHYSICS LETTERS B, 1990, 244 (3-4) :403-412
[3]   Emergence of scaling in random networks [J].
Barabási, AL ;
Albert, R .
SCIENCE, 1999, 286 (5439) :509-512
[4]  
BAUER M, CONDMAT0206150
[5]   Correlated random networks -: art. no. 228701 [J].
Berg, J ;
Lässig, M .
PHYSICAL REVIEW LETTERS, 2002, 89 (22) :228701-228701
[6]  
BERG J, CONDMAT0207711
[7]   Phase diagram of the mean field model of simplicial gravity [J].
Bialas, P ;
Burda, Z ;
Johnston, D .
NUCLEAR PHYSICS B, 1999, 542 (1-2) :413-424
[8]   Phase transition in fluctuating branched geometry [J].
Bialas, P ;
Burda, Z .
PHYSICS LETTERS B, 1996, 384 (1-4) :75-80
[9]  
BIANCONI G, CONDMAT0212028
[10]  
Bollobas B., 2001, CAMBRIDGE STUDIES AD, V73