Aberrant p38 mitogen-activated protein kinase signalling in skeletal muscle from Type 2 diabetic patients

被引:93
作者
Koistinen, HA
Chibalin, AV
Zierath, JR
机构
[1] Karolinska Inst, Sect Integrat Physiol, Dept Surg, S-17177 Stockholm, Sweden
[2] Univ Helsinki, Cent Hosp, Dept Med, Div Cardiol, Helsinki, Finland
[3] Biomedicum, Helsinki, Finland
关键词
5-AMP activated protein kinase; 5-aminoimidazole-4-carboxamide ribonucleoside; insulin signalling; glucose transport; mitogen-activated protein kinase;
D O I
10.1007/s00125-003-1196-3
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Aims/hypothesis. p38 mitogen activated protein kinase (MAPK) is generally thought to facilitate signal transduction to genomic, rather than metabolic responses. However, recent evidence implicates a role for p38 MAPK in the regulation of glucose transport; a site of insulin resistance in Type 2 diabetes. Thus we determined p38 MAPK protein expression and phosphorylation in skeletal muscle from Type 2 diabetic patients and non-diabetic subjects. Methods. In vitro effects of insulin (120 nmol/l) or AICAR (1 mmol/l) on p38 MAPK expression and phosphorylation were determined in skeletal muscle from non-diabetic (n=6) and Type 2 diabetic (n=9) subjects. Results. p38 MAPK protein expression was similar between Type 2 diabetic patients and non-diabetic subjects. Insulin exposure increased p38 MAPK phosphorylation in non-diabetic, but not in Type 2 diabetic patients. In contrast, basal phosphorylation of p38 MAPK was increased in skeletal muscle from Type 2 diabetic patients. Conclusion/interpretation. Insulin increases p38 MAPK phosphorylation in skeletal muscle from non-diabetic subjects, but not in Type 2 diabetic patients. However, basal p38 MAPK phosphorylation is increased in skeletal muscle from Type 2 diabetic patients. Thus, aberrant p38 MAPK signalling might contribute to the pathogenesis of insulin resistance.
引用
收藏
页码:1324 / 1328
页数:5
相关论文
共 34 条
[1]   DECREASED INSULIN-STIMULATED 3-0-METHYLGLUCOSE TRANSPORT IN INVITRO INCUBATED MUSCLE STRIPS FROM TYPE-II DIABETIC SUBJECTS [J].
ANDREASSON, K ;
GALUSKA, D ;
THORNE, A ;
SONNENFELD, T ;
WALLBERGHENRIKSSON, H .
ACTA PHYSIOLOGICA SCANDINAVICA, 1991, 142 (02) :255-260
[2]   DEFECTIVE INSULIN-RECEPTOR TYROSINE KINASE IN HUMAN SKELETAL-MUSCLE IN OBESITY AND TYPE-2 (NON-INSULIN-DEPENDENT) DIABETES-MELLITUS [J].
ARNER, P ;
POLLARE, T ;
LITHELL, H ;
LIVINGSTON, JN .
DIABETOLOGIA, 1987, 30 (06) :437-440
[3]   Insulin receptor substrate-1 phosphorylation and phosphatidylinositol 3-kinase activity in skeletal muscle from NIDDM subjects after in vivo insulin stimulation [J].
Bjornholm, M ;
Kawano, Y ;
Lehtihet, M ;
Zierath, JR .
DIABETES, 1997, 46 (03) :524-527
[4]   Enhanced basal activation of mitogen-activated protein kinases in adipocytes from type 2 diabetes - Potential role of p38 in the downregulation of GLUT4 expression [J].
Carlson, CJ ;
Koterski, S ;
Sciotti, RJ ;
Poccard, GB ;
Rondinone, CM .
DIABETES, 2003, 52 (03) :634-641
[6]   Insulin resistance differentially affects the PI3-kinase- and MAP kinase-mediated signaling in human muscle [J].
Cusi, K ;
Maezono, K ;
Osman, A ;
Pendergrass, M ;
Patti, ME ;
Pratipanawatr, T ;
DeFronzo, RA ;
Kahn, CR ;
Mandarino, LJ .
JOURNAL OF CLINICAL INVESTIGATION, 2000, 105 (03) :311-320
[7]  
DEFRONZO RA, 1979, AM J PHYSIOL, V237, pE214
[8]   AN INVITRO HUMAN MUSCLE PREPARATION SUITABLE FOR METABOLIC STUDIES - DECREASED INSULIN STIMULATION OF GLUCOSE-TRANSPORT IN MUSCLE FROM MORBIDLY OBESE AND DIABETIC SUBJECTS [J].
DOHM, GL ;
TAPSCOTT, EB ;
PORIES, WJ ;
DABBS, DJ ;
FLICKINGER, EG ;
MEELHEIM, D ;
FUSHIKI, T ;
ATKINSON, SM ;
ELTON, CW ;
CARO, JF .
JOURNAL OF CLINICAL INVESTIGATION, 1988, 82 (02) :486-494
[9]  
DUNAIF A, 1919, AM J PHYSIOL, V281, pE392
[10]   Impaired glucose transport and insulin receptor tyrosine phosphorylation in skeletal muscle from obese women with gestational diabetes [J].
Friedman, JE ;
Ishizuka, T ;
Shao, JH ;
Huston, L ;
Highman, T ;
Catalano, P .
DIABETES, 1999, 48 (09) :1807-1814