Model-based variance-stabilizing transformation for Illumina microarray data

被引:396
作者
Lin, Simon M. [1 ]
Du, Pan [1 ]
Huber, Wolfgang [2 ]
Kibbe, Warren A. [1 ]
机构
[1] Northwestern Univ, Robert H Lurie Comprehens Canc Ctr, Chicago, IL 60611 USA
[2] European Bioinformat Inst, European Mol Biol Lab, Cambridge CB10 1SD, England
关键词
D O I
10.1093/nar/gkm1075
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Variance stabilization is a step in the preprocessing of microarray data that can greatly benefit the performance of subsequent statistical modeling and inference. Due to the often limited number of technical replicates for Affymetrix and cDNA arrays, achieving variance stabilization can be difficult. Although the Illumina microarray platform provides a larger number of technical replicates on each array (usually over 30 randomly distributed beads per probe), these replicates have not been leveraged in the current log2 data transformation process. We devised a variance-stabilizing transformation (VST) method that takes advantage of the technical replicates available on an Illumina microarray. We have compared VST with log2 and Variance-stabilizing normalization (VSN) by using the Kruglyak bead-level data (2006) and Barnes titration data (2005). The results of the Kruglyak data suggest that VST stabilizes variances of bead-replicates within an array. The results of the Barnes data show that VST can improve the detection of differentially expressed genes and reduce false-positive identifications. We conclude that although both VST and VSN are built upon the same model of measurement noise, VST stabilizes the variance better and more efficiently for the Illumina platform by leveraging the availability of a larger number of within-array replicates. The algorithms and Supplementary Data are included in the lumi package of Bioconductor, available at: www.bioconductor.org.
引用
收藏
页数:9
相关论文
共 18 条
[1]   A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes [J].
Baldi, P ;
Long, AD .
BIOINFORMATICS, 2001, 17 (06) :509-519
[2]   Experimental comparison and cross-validation of the Affymetrix and Illumina gene expression analysis platforms [J].
Barnes, M ;
Freudenberg, J ;
Thompson, S ;
Aronow, B ;
Pavlidis, P .
NUCLEIC ACIDS RESEARCH, 2005, 33 (18) :5914-5923
[3]   A comparison of normalization methods for high density oligonucleotide array data based on variance and bias [J].
Bolstad, BM ;
Irizarry, RA ;
Åstrand, M ;
Speed, TP .
BIOINFORMATICS, 2003, 19 (02) :185-193
[4]   Minimum information about a microarray experiment (MIAME) - toward standards for microarray data [J].
Brazma, A ;
Hingamp, P ;
Quackenbush, J ;
Sherlock, G ;
Spellman, P ;
Stoeckert, C ;
Aach, J ;
Ansorge, W ;
Ball, CA ;
Causton, HC ;
Gaasterland, T ;
Glenisson, P ;
Holstege, FCP ;
Kim, IF ;
Markowitz, V ;
Matese, JC ;
Parkinson, H ;
Robinson, A ;
Sarkans, U ;
Schulze-Kremer, S ;
Stewart, J ;
Taylor, R ;
Vilo, J ;
Vingron, M .
NATURE GENETICS, 2001, 29 (04) :365-371
[5]   Preferred analysis methods for Affymetrix GeneChips revealed by a wholly defined control dataset [J].
Choe, SE ;
Boutros, M ;
Michelson, AM ;
Church, GM ;
Halfon, MS .
GENOME BIOLOGY, 2005, 6 (02)
[6]   A model of technical variation of microarray signals [J].
Chudin, E. ;
Kruglyak, S. ;
Baker, S. C. ;
Oeser, S. ;
Barker, D. ;
McDaniel, T. K. .
JOURNAL OF COMPUTATIONAL BIOLOGY, 2006, 13 (04) :996-1003
[7]   nuID: a universal naming scheme of oligonucleotides for Illumina, Affymetrix, and other microarrays [J].
Du, Pan ;
Kibbe, Warren A. ;
Lin, Simon M. .
BIOLOGY DIRECT, 2007, 2 (1)
[8]   Estimation of transformation parameters for microarray data [J].
Durbin, B ;
Rocke, DM .
BIOINFORMATICS, 2003, 19 (11) :1360-1367
[9]  
Durbin B P, 2002, Bioinformatics, V18 Suppl 1, pS105
[10]  
Huang Shuguang, 2004, Am J Pharmacogenomics, V4, P129, DOI 10.2165/00129785-200404020-00007