Interior-point methods for nonconvex nonlinear programming: Jamming and numerical testing

被引:33
作者
Benson, HY [1 ]
Shanno, DF
Vanderbei, RJ
机构
[1] Princeton Univ, Princeton, NJ 08544 USA
[2] Rutgers State Univ, New Brunswick, NJ 08903 USA
关键词
interior-point methods; nonconvex optimization; nonlinear programming; jamming;
D O I
10.1007/s10107-003-0418-2
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The paper considers an example of Wachter and Biegler which is shown to converge to a nonstationary point for the standard primal-dual interior-point method for nonlinear programming. The reason for this failure is analyzed and a heuristic resolution is discussed. The paper then characterizes the performance of LOQO, a line-search interior-point code, on a large test set of nonlinear programming problems. Specific types of problems which can cause LOQO to fail are identified.
引用
收藏
页码:35 / 48
页数:14
相关论文
共 18 条
  • [1] BENSON HY, BENCHMARKS COMPARING
  • [2] BENSON HY, LOQO PARAMETER TUNIN
  • [3] CUTE - CONSTRAINED AND UNCONSTRAINED TESTING ENVIRONMENT
    BONGARTZ, I
    CONN, AR
    GOULD, N
    TOINT, PL
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1995, 21 (01): : 123 - 160
  • [4] An interior point algorithm for large-scale nonlinear programming
    Byrd, RH
    Hribar, ME
    Nocedal, J
    [J]. SIAM JOURNAL ON OPTIMIZATION, 1999, 9 (04) : 877 - 900
  • [5] On the formulation and theory of the Newton interior-point method for nonlinear programming
    ElBakry, AS
    Tapia, RA
    Tsuchiya, T
    Zhang, Y
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1996, 89 (03) : 507 - 541
  • [6] Fiacco A. V., 1990, Nonlinear Programming: Sequential Unconstrained Minimization Techniques
  • [7] Fourer R, 1993, AMPL MODELING LANGUA
  • [8] Lustig I. J., 1994, ORSA Journal on Computing, V6, P1, DOI 10.1287/ijoc.6.1.1
  • [9] Marazzi M, 2001, LOND MATH S, V284, P125
  • [10] MODIFIED BARRIER FUNCTIONS (THEORY AND METHODS)
    POLYAK, R
    [J]. MATHEMATICAL PROGRAMMING, 1992, 54 (02) : 177 - 222