Quantification of gel-separated proteins and their phosphorylation sites by LC-MS using unlabeled internal standards - Analysis of phosphoprotein dynamics in a B cell lymphoma cell line

被引:49
作者
Cutillas, PR
Geering, B
Waterfield, MD
机构
[1] Ludwig Inst Canc Res, Cell Signalling Grp, London W1W 7BS, England
[2] Ludwig Inst Canc Res, Proteom Unit, London W1C 6BT, England
[3] UCL, Dept Biochem & Mol Biol, London WC1E 6BT, England
关键词
D O I
10.1074/mcp.M500078-MCP200
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Protein phosphorylation plays a critical role in normal cellular function and is often subverted in disease. Although major advances have recently been made in identification and quantitation of protein phosphorylation sites by MS, current methodological limitations still preclude routine, easily usable, and comprehensive quantitative analysis of protein phosphorylation. Here we report a simple LC-MS method to quantify gel-separated proteins and their sites of phosphorylation; in this approach, integrated chromatographic peak areas of peptide analytes from proteins under study are normalized to those of a nonisotopically labeled internal standard protein spiked into the excised gel samples just prior to in-gel digestion. The internal standard intensities correct for differences in enzymatic activities and sample losses that may occur during the processes of in-gel digestion and peptide extraction from the gel pieces. We used this method of peak area measurement with an internal standard to investigate the effects of pervanadate on protein phosphorylation in the WEHI-231 B cell lymphoma cell line and to assess the role of phosphoinositide 3-kinase (PI3K) in these phosphorylation events. Phosphoproteins, isolated from total cell lysates using IMAC or by immunoprecipitation using Tyr(P) antibodies, were analyzed using this method, leading to identification of > 400 proteins, several of which were found at higher levels in phosphoprotein fractions after pervanadate treatment. Pretreatment of cells with the PI3K inhibitor wortmannin reduced the phosphorylation level of certain proteins ( e. g. STAT1 and phospholipase C gamma 2) while increasing the phosphorylation of several others. Peak area measurement with an internal standard was also used to follow the dynamics of PI3K-dependent and - independent changes in the post-translational modification of both known and novel phospholipase C gamma 2 phosphorylation sites. Our results illustrate the capacity of this conceptually simple LC-MS method for quantification of gel-separated proteins and their phosphorylation sites and for quantitative profiling of biological systems.
引用
收藏
页码:1038 / 1051
页数:14
相关论文
共 46 条
[1]   Proteomic characterization of the human centrosome by protein correlation profiling [J].
Andersen, JS ;
Wilkinson, CJ ;
Mayor, T ;
Mortensen, P ;
Nigg, EA ;
Mann, M .
NATURE, 2003, 426 (6966) :570-574
[2]   Quantitative phosphorylation profiling of the ERK/p90 ribosomal S6 kinase-signaling cassette and its targets, the tuberous sclerosis tumor suppressors [J].
Ballif, BA ;
Roux, PP ;
Gerber, SA ;
MacKeigan, JP ;
Blenis, J ;
Gygi, SP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (03) :667-672
[3]   Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics [J].
Blagoev, B ;
Ong, SE ;
Kratchmarova, I ;
Mann, M .
NATURE BIOTECHNOLOGY, 2004, 22 (09) :1139-1145
[4]   Band 3 is an anchor protein and a target for SHP-2 tyrosine phosphatase in human erythrocytes [J].
Bordin, L ;
Brunati, AM ;
Donella-Deana, A ;
Baggio, B ;
Toninello, A ;
Clari, G .
BLOOD, 2002, 100 (01) :276-282
[5]   Robust phosphoproteomic profiling of tyrosine phosphorylation sites from human T cells using immobilized metal affinity chromatography and tandem mass spectrometry [J].
Brill, LM ;
Salomon, AR ;
Ficarro, SB ;
Mukherji, M ;
Stettler-Gill, M ;
Peters, EC .
ANALYTICAL CHEMISTRY, 2004, 76 (10) :2763-2772
[6]   The need for guidelines in publication of peptide and protein identification data - Working group on publication guidelines for peptide and protein identification data [J].
Carr, S ;
Aebersold, R ;
Baldwin, M ;
Burlingame, A ;
Clauser, K ;
Nesvizhskii, A .
MOLECULAR & CELLULAR PROTEOMICS, 2004, 3 (06) :531-533
[7]   Global protein identification and quantification technology using two-dimensional liquid chromatography nanospray mass spectrometry [J].
Chelius, D ;
Zhang, T ;
Wang, GH ;
Shen, RF .
ANALYTICAL CHEMISTRY, 2003, 75 (23) :6658-6665
[8]   Quantitative profiling of proteins in complex mixtures using liquid chromatography and mass spectrometry [J].
Chelius, D ;
Bondarenko, PV .
JOURNAL OF PROTEOME RESEARCH, 2002, 1 (04) :317-323
[9]   Role of accurate mass measurement (±10 ppm) in protein identification strategies employing MS or MS MS and database searching [J].
Clauser, KR ;
Baker, P ;
Burlingame, AL .
ANALYTICAL CHEMISTRY, 1999, 71 (14) :2871-2882
[10]   Proteomic analysis of in vivo phosphorylated synaptic proteins [J].
Collins, MO ;
Yu, L ;
Coba, MP ;
Husi, H ;
Campuzano, L ;
Blackstock, WP ;
Choudhary, JS ;
Grant, SGN .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (07) :5972-5982