Growth differentiation factor-9 signaling is mediated by the type I receptor, activin receptor-like kinase 5

被引:198
作者
Mazerbourg, S
Klein, C
Roh, J
Kaivo-Oja, N
Mottershead, DG
Korchynskyi, O
Ritvos, O
Hsueh, AJW [1 ]
机构
[1] Stanford Univ, Sch Med, Dept Obstet & Gynecol, Div Reprod Biol, Stanford, CA 94305 USA
[2] Univ Helsinki, Biomed Helsinki, Dev & Reprod Biol Program, FIN-00014 Helsinki, Finland
[3] Univ Helsinki, Haartman Inst, Dept Bacteriol & Immunol, FIN-00014 Helsinki, Finland
[4] Netherlands Canc Inst, Dept Cellular Biochem, NL-1066 CX Amsterdam, Netherlands
关键词
D O I
10.1210/me.2003-0393
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Growth differentiation factor-9 (GDF-9) is an oocyte-derived growth factor and a member of the TGF-beta superfamily that includes TGF-beta, activin, and bone morphogenetic proteins (BMPs). GDF-9 is indispensable for the development of ovarian follicles from the primary stage, and treatment with GDF-9 enhances the progression of early follicles into small preantral follicles. Similar to other TGF-beta family ligands, GDF-9 likely initiates signaling mediated by type I and type II receptors with serine/threonine kinase activity, followed by the phosphorylation of intracellular transcription factors named Smads. We have shown previously that GDF-9 interacts with the BMP type II receptor (BM-PRII) in granulosa cells, but the type I receptor involved is unknown. Using P19 cells, we now report that GDF-9 treatment stimulated the CAGA-luciferase reporter known to be responsive to TGF-beta mediated by the type I receptor, activin receptor-like kinase (ALK)5. In contrast, GDF-9 did not stimulate BMP-responsive reporters. In addition, treatment with GDF-9 induced the phosphorylation of Smad2 and Smad3 in P19 cells, and the stimulatory effect of GDF-9 on the CAGA-luciferase reporter was blocked by the inhibitory Smad7, but not Smad6. We further reconstructed the GDF-9 signaling pathway using Cos7 cells that are not responsive to GDF-9. After overexpression of ALK5, with or without exogenous Smad3, the Cos7 cells gained GDF-9 responsiveness based on the CAGA-luciferase reporter assay. The roles of ALK5 and downstream pathway genes in mediating GDF-9 actions were further tested in ovarian cells. In cultured rat granulosa cells from early antral follicles, treatment with GDF-9 stimulated the CAGA-luciferase reporter activity and induced the phosphorylation of Smad3. Furthermore, transfection with small interfering RNA for ALK5 or overexpression of the inhibitory Smad7 resulted in dose-dependent suppression of GDF-9 actions. In conclusion, although GDF-9 binds to the BMP-activated type II receptor, its downstream actions are mediated by the type I receptor, ALK5, and the Smad2 and Smad3 proteins. Because ALK5 is a known receptor for TGF-beta, diverse members of the TGF-beta family of ligands appear to interact with a limited number of receptors in a combinatorial manner to activate two downstream Smad pathways.
引用
收藏
页码:653 / 665
页数:13
相关论文
共 68 条
[1]   Human growth differentiation factor 9 (GDF-9) and its novel homolog GDF-9B are expressed in oocytes during early folliculogenesis [J].
Aaltonen, J ;
Laitinen, MP ;
Vuojolainen, K ;
Jaatinen, R ;
Horelli-Kuitunen, N ;
Seppä, L ;
Louhio, H ;
Tuuri, T ;
Sjöberg, J ;
Bützow, R ;
Hovatta, O ;
Dale, L ;
Ritvos, O .
JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM, 1999, 84 (08) :2744-2750
[2]  
ADASHI EY, 1992, ENDOCRIN METAB CLIN, V21, P1
[3]   IDENTIFICATION OF HUMAN ACTIVIN AND TGF-BETA TYPE-I RECEPTORS THAT FORM HETEROMERIC KINASE COMPLEXES WITH TYPE-II RECEPTORS [J].
ATTISANO, L ;
CARCAMO, J ;
VENTURA, F ;
WEIS, FMB ;
MASSAGUE, J ;
WRANA, JL .
CELL, 1993, 75 (04) :671-680
[4]   Cripto-1 activates nodal- and ALK4-dependent and -independent signaling pathways in mammary epithelial cells [J].
Bianco, C ;
Adkins, HB ;
Wechselberger, C ;
Seno, M ;
Normanno, N ;
De Luca, A ;
Sun, YP ;
Khan, N ;
Kenney, N ;
Ebert, A ;
Williams, KP ;
Sanicola, M ;
Salomon, DS .
MOLECULAR AND CELLULAR BIOLOGY, 2002, 22 (08) :2586-2597
[5]  
CHEIFETZ S, 1990, J BIOL CHEM, V265, P20533
[6]   THE TRANSFORMING GROWTH-FACTOR-BETA SYSTEM, A COMPLEX PATTERN OF CROSS-REACTIVE LIGANDS AND RECEPTORS [J].
CHEIFETZ, S ;
WEATHERBEE, JA ;
TSANG, MLS ;
ANDERSON, JK ;
MOLE, JE ;
LUCAS, R ;
MASSAGUE, J .
CELL, 1987, 48 (03) :409-415
[7]   Direct binding of Smad3 and Smad4 to critical TGFβ-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene [J].
Dennler, S ;
Itoh, S ;
Vivien, D ;
ten Dijke, P ;
Huet, S ;
Gauthier, JM .
EMBO JOURNAL, 1998, 17 (11) :3091-3100
[8]   Growth differentiation factor-9 is required during early ovarian folliculogenesis [J].
Dong, JW ;
Albertini, DF ;
Nishimori, K ;
Kumar, TR ;
Lu, NF ;
Matzuk, MM .
NATURE, 1996, 383 (6600) :531-535
[9]   The bone morphogenetic protein 15 gene is X-linked and expressed in oocytes [J].
Dube, JL ;
Wang, P ;
Elvin, J ;
Lyons, KM ;
Celeste, AJ ;
Matzuk, MM .
MOLECULAR ENDOCRINOLOGY, 1998, 12 (12) :1809-1817
[10]   Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells [J].
Elbashir, SM ;
Harborth, J ;
Lendeckel, W ;
Yalcin, A ;
Weber, K ;
Tuschl, T .
NATURE, 2001, 411 (6836) :494-498