A unifying framework for self-consistent gravitational lensing and stellar dynamics analyses of early-type galaxies

被引:50
作者
Barnabe, Matteo [1 ]
Koopmans, Leon V. E. [1 ]
机构
[1] Univ Groningen, Kapteyn Astron Inst, NL-9700 AV Groningen, Netherlands
关键词
galaxies : elliptical and lenticular; cD; galaxies : structure; gravitational lensing stellar; dynamics;
D O I
10.1086/520495
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Gravitational lensing and stellar dynamics are two independent methods, based solely on gravity, to study the mass distributions of galaxies. Both methods suffer from degeneracies, however, that are difficult to break. In this paper we present a new framework that self-consistently unifies gravitational lensing and stellar dynamics, breaking some classical degeneracies that have limited their individual usage, particularly in the study of high-redshift galaxies. For any given galaxy potential, the mapping of both the unknown lensed source brightness distribution and the stellar phase-space distribution function onto the photometric and kinematic observables can be cast as a single set of coupled linear equations, which are solved by maximizing the likelihood penalty function. The Bayesian evidence penalty function subsequently allows one to find the best potential-model parameters and to quantitatively rank potential-model families or other model assumptions ( e. g., PSF). We have implemented a fast algorithm that solves for the maximum-likelihood pixelized lensed source brightness distribution and the two-integral stellar phase- space distribution function f ( E; L-z), assuming axisymmetric potentials. To make the method practical, we have devised a new Monte Carlo approach to Schwarzschild's orbital superposition method, based on the superposition of twointegral ( E and Lz) toroidal components, to find the maximum-likelihood two-integral distribution function in a matter of seconds in any axisymmetric potential. The nonlinear parameters of the potential are subsequently found through a hybrid MCMC and Simplex optimization of the evidence. Illustrated by the power-law potential models of Evans, we show that the inclusion of stellar kinematic constraints allows the correct linear and nonlinear model parameters to be recovered, including the potential strength, oblateness, and inclination, which, in the case of gravitational-lensing constraints only, would otherwise be fully degenerate.
引用
收藏
页码:726 / 746
页数:21
相关论文
共 95 条
[71]   High-resolution observations and mass modelling of the CLASS gravitational lens B1152+199 [J].
Rusin, D ;
Norbury, M ;
Biggs, AD ;
Marlow, DR ;
Jackson, NJ ;
Browne, IWA ;
Wilkinson, PN ;
Myers, ST .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2002, 330 (01) :205-211
[72]   Constraints on the inner mass profiles of lensing galaxies from missing odd images [J].
Rusin, D ;
Ma, CP .
ASTROPHYSICAL JOURNAL, 2001, 549 (01) :L33-L37
[73]   ELLIPTIC GALAXIES WITH DARK MATTER .2. OPTIMAL LUMINOUS DARK MATTER DECOMPOSITION FOR A SAMPLE OF BRIGHT OBJECTS [J].
SAGLIA, RP ;
BERTIN, G ;
STIAVELLI, M .
ASTROPHYSICAL JOURNAL, 1992, 384 (02) :433-447
[74]   Gravitational lensing model degeneracies: Is steepness all-important? [J].
Saha, Prasenjit ;
Williams, Liliya L. R. .
ASTROPHYSICAL JOURNAL, 2006, 653 (02) :936-941
[75]   Nuclide production by proton-induced reactions on elements (6<=Z<=29) in the energy range from 200MeV to 400MeV [J].
Schiekel, T ;
Sudbrock, F ;
Herpers, U ;
Gloris, M ;
Lange, HJ ;
Leya, I ;
Michel, R ;
DittrichHannen, B ;
Synal, HA ;
Suter, M ;
Kubik, PW ;
Blann, M ;
Filges, D .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 1996, 114 (1-2) :91-119
[76]  
SCHNEIDER P, 2006, LECT NOTES 33 SAAS A
[77]  
Schneider P, 1992, Gravitational Lenses
[78]   NUMERICAL-MODEL FOR A TRIAXIAL STELLAR SYSTEM IN DYNAMICAL EQUILIBRIUM [J].
SCHWARZSCHILD, M .
ASTROPHYSICAL JOURNAL, 1979, 232 (01) :236-247
[79]   Constraints on galaxy halo profiles from galaxy-galaxy lensing and Tully-Fisher/Fundamental Plane relations [J].
Seljak, U .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2002, 334 (04) :797-804
[80]   A Bayesian analysis of regularized source inversions in gravitational lensing [J].
Suyu, S. H. ;
Marshall, P. J. ;
Hobson, M. P. ;
Blandford, R. D. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2006, 371 (02) :983-998