Invertible smoothing preconditioners for linear discrete ill-posed problems

被引:42
作者
Calvetti, D
Reichel, L [1 ]
Shuibi, A
机构
[1] Kent State Univ, Dept Math Sci, Kent, OH 44242 USA
[2] Case Western Reserve Univ, Dept Math, Cleveland, OH 44106 USA
[3] De Paul Univ, Dept Math Sci, Chicago, IL 60614 USA
关键词
ill-posed problem; iterative method; GMRES; RRGMRES; LSQR; preconditioning;
D O I
10.1016/j.apnum.2004.09.027
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The solution of large linear discrete ill-posed problems by iterative methods has recently received considerable attention. This paper presents invertible smoothing preconditioners which are well suited for use with the GMRES, RRGMRES and LSQR methods. (c) 2004 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:135 / 149
页数:15
相关论文
共 20 条
[1]  
[Anonymous], 1985, COMPUTATIONAL METHOD
[3]  
BJORCK A, 1979, METHODS NUMERICAL LI
[4]   GMRES-type methods for inconsistent systems [J].
Calvetti, D ;
Lewis, B ;
Reichel, L .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2000, 316 (1-3) :157-169
[5]   On the regularizing properties of the GMRES method [J].
Calvetti, D ;
Lewis, B ;
Reichel, L .
NUMERISCHE MATHEMATIK, 2002, 91 (04) :605-625
[6]   GMRES, L-curves, and discrete ill-posed problems [J].
Calvetti, D ;
Lewis, B ;
Reichel, L .
BIT, 2002, 42 (01) :44-65
[7]   Restoration of images with spatially variant blur by the GMRES method [J].
Calvetti, D ;
Lewis, B ;
Reichel, L .
ADVANCED SIGNAL PROCESSING ALGORITHMS, ARCHITECTURES, AND IMPLEMENTATIONS X, 2000, 4116 :364-374
[8]  
CALVETTI D, 2001, J APPL MATH COMPUT S, V11, P1069
[9]  
ELDEN L, 1982, BIT, V22, P487, DOI 10.1007/BF01934412
[10]  
ENGL HW, 1996, REGLARIZATION INVERS