GMRES-type methods for inconsistent systems

被引:62
作者
Calvetti, D
Lewis, B
Reichel, L [1 ]
机构
[1] Kent State Univ, Dept Math & Comp Sci, Kent, OH 44242 USA
[2] Case Western Reserve Univ, Dept Math, Cleveland, OH 44106 USA
基金
美国国家科学基金会;
关键词
Krylov methods; singular linear systems;
D O I
10.1016/S0024-3795(00)00064-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The behavior of iterative methods of GMRES-type when applied to singular, possibly inconsistent, linear systems is discussed and conditions under which these methods converge to the least-squares solution of minimal norm are presented. Error bounds for the computed iterates are shown. This paper complements previous work by Brown and Walker [P.N. Brown, H.F Walker, SIAM J. Matrix Anal. Appl, 18 (1997) 37-51], (C) 2000 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:157 / 169
页数:13
相关论文
共 8 条
[1]  
Berman A., 1994, NONNEGATIVE MATRICS
[2]  
BJORCK A, 1996, NUMERICAL METHODS LE
[3]   GMRES on (nearly) singular systems [J].
Brown, PN ;
Walker, HF .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1997, 18 (01) :37-51
[4]   Error analysis of Krylov methods in a nutshell [J].
Hochbruck, M ;
Lubich, C .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 19 (02) :695-701
[5]   The idea behind Krylov methods [J].
Ipsen, ICF ;
Meyer, CD .
AMERICAN MATHEMATICAL MONTHLY, 1998, 105 (10) :889-899
[6]  
SAAD Y, 1986, SIAM J SCI STAT COMP, V7, P856, DOI 10.1137/0907058
[7]  
Saad Y., 1996, Iterative Methods for Sparse Linear Systems
[8]   A Simpler GMRES [J].
Walker, Homer F. ;
Zhou, Lu .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 1994, 1 (06) :571-581