Optimizing spotting solutions for increased reproducibility of cDNA microarrays

被引:44
作者
Rickman, DS [1 ]
Herbert, CJ [1 ]
Aggerbeck, LP [1 ]
机构
[1] Univ Paris 06, CNRS, UPR 2176, Ctr Genet Mol, F-91198 Gif Sur Yvette, France
关键词
D O I
10.1093/nar/gng109
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The ability to extract meaningful information from transcriptome technologies such as cDNA microarrays relies on the precision, sensitivity and reproducibility of the measured values for a given gene across multiple samples. Given the lack of a 'gold standard' for the production of microarrays using current technologies, there is a high degree of variation in the quality of data derived from microarray experiments. Poor reproducibility not only adds to the cost of a given study but also leads to data sets that are difficult to interpret. For glass slide DNA microarrays, much of this variation is introduced systematically, during the spotting, or deposition, of the DNA onto the slide surface. In order to reduce this type of systematic variation we tested spotting solutions containing different detergent additives in the presence of one of two different denaturants and determined their effect on spot quality. We show that spotting cDNA in a solution consisting of the zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]- 1-propane sulfonate ( CHAPS) in the presence of formamide or dimethyl sulfoxide yields spots of superior quality in terms of morphology, size homogeneity and signal reproducibility, as well as overall intensity, when used with popular, commercially available slides.
引用
收藏
页数:8
相关论文
共 20 条
[1]  
BENNETZEN JL, 1982, J BIOL CHEM, V257, P3026
[2]   Global analysis of mRNA decay and abundance in Escherichia coli at single-gene resolution using two-color fluorescent DNA microarrays [J].
Bernstein, JA ;
Khodursky, AB ;
Lin, PH ;
Lin-Chao, S ;
Cohen, SN .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (15) :9697-9702
[3]   Genetic and physical maps of Saccharomyces cerevisiae [J].
Cherry, JM ;
Ball, C ;
Weng, S ;
Juvik, G ;
Schmidt, R ;
Adler, C ;
Dunn, B ;
Dwight, S ;
Riles, L ;
Mortimer, RK ;
Botstein, D .
NATURE, 1997, 387 (6632) :67-73
[4]   Fundamentals of experimental design for cDNA microarrays [J].
Churchill, GA .
NATURE GENETICS, 2002, 32 (Suppl 4) :490-495
[5]   Exploring the metabolic and genetic control of gene expression on a genomic scale [J].
DeRisi, JL ;
Iyer, VR ;
Brown, PO .
SCIENCE, 1997, 278 (5338) :680-686
[6]   Manufacturing DNA microarrays of high spot homogeneity and reduced background signal [J].
Diehl, Frank ;
Grahlmann, Susanne ;
Beier, Markus ;
Hoheisel, Joerg D. .
NUCLEIC ACIDS RESEARCH, 2001, 29 (07)
[7]   In vivo cleavage of Escherichia coli BIME-2 repeats by DNA gyrase: genetic characterization of the target and identification of the cut site [J].
Espeli, O ;
Boccard, F .
MOLECULAR MICROBIOLOGY, 1997, 26 (04) :767-777
[8]   A concise guide to cDNA microarray analysis [J].
Hegde, P ;
Qi, R ;
Abernathy, K ;
Gay, C ;
Dharap, S ;
Gaspard, R ;
Hughes, JE ;
Snesrud, E ;
Lee, N ;
Quackenbush, J .
BIOTECHNIQUES, 2000, 29 (03) :548-+
[9]   Dissecting the regulatory circuitry of a eukaryotic genome [J].
Holstege, FCP ;
Jennings, EG ;
Wyrick, JJ ;
Lee, TI ;
Hengartner, CJ ;
Green, MR ;
Golub, TR ;
Lander, ES ;
Young, RA .
CELL, 1998, 95 (05) :717-728
[10]   Analysis of variance for gene expression microarray data [J].
Kerr, MK ;
Martin, M ;
Churchill, GA .
JOURNAL OF COMPUTATIONAL BIOLOGY, 2000, 7 (06) :819-837