Spectral analysis of fractional kinetic equations with random data

被引:128
作者
Anh, VV
Leonenko, NN
机构
[1] Queensland Univ Technol, Sch Math Sci, Brisbane, Qld 4001, Australia
[2] Cardiff Univ, Sch Math, Cardiff CF2 4YH, S Glam, Wales
[3] Kyiv Univ Natl, Dept Math, UA-252601 Kiev, Ukraine
基金
澳大利亚研究理事会;
关键词
fractional kinetic equation; fractional diffusion equation; scaling laws; renormalised solution; long-range dependence; non-Gaussian scenario; Mittag-Leffler function; Bessel potential; Riesz potential; stable distributions;
D O I
10.1023/A:1010474332598
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a spectral representation of the mean-square solution of the fractional kinetic equation (also known as fractional diffusion equation) with random initial condition. Gaussian and non-Gaussian limiting distributions of the renormalized solution of the fractional-in-time and in-space kinetic equation are described in terms of multiple stochastic integral representations.
引用
收藏
页码:1349 / 1387
页数:39
相关论文
共 80 条
[51]  
Mainardi F., 1995, Nonlinear Waves Solids, V137, P93
[52]  
Mainardi F., 1997, FRACTAL FRACT, P291, DOI [DOI 10.1007/978-3-7091-2664-6_7, 10.1007/978-3-662-03425-5, 10.1007/978-3-7091-2664-6_7]
[53]  
MAJOR P, 1981, LECT NOTES MATH
[54]   FRACTIONAL MODEL EQUATION FOR ANOMALOUS DIFFUSION [J].
METZLER, R ;
GLOCKLE, WG ;
NONNENMACHER, TF .
PHYSICA A, 1994, 211 (01) :13-24
[55]  
Miller K. S., 1993, An Introduction to the Fractional Calculus and Fractional Differential Equations, DOI DOI 10.1016/S0076-5392(99)80020-4
[56]   GENERALIZED BROWNIAN FUNCTIONALS AND THE SOLUTION TO A STOCHASTIC PARTIAL-DIFFERENTIAL EQUATION [J].
NUALART, D ;
ZAKAI, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 1989, 84 (02) :279-296
[57]  
OBERHETTINGER F, 1973, FOURIER TRANSFORM DI
[58]  
Oldham KB, 1974, Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order
[59]  
OSTROVSKII IV, 1995, MATH PHYS ANAL GEOM, V2, P436
[60]  
Podulubny I, 1999, Fractional differential equation